Lipo-chitin oligosaccharides (LCOs) are novel bacterial glycolipid signal molecules that mediate the species--specific symbiosis between rhizobial bacteria and leguminous plants. Nodulation of the legume roots and nitrogen-fixation in the resulting nodules by Rhizobia is controlled by the bacterial nodulation genes that encode the LCO biosynthetic enzymes. The length of the LCO chitin backbone, the length and degree of unsaturation of the fatty acyl chain attached to it, and the combination of different chemical substituents on the reducing- and nonreducing-terminal residues all contribute to the species--specificity of the signal. LCOs are bioactive in the nanomolar and subnanomolar concentration range and are produced as heterogeneous mixtures, making determination of their structures a difficult task, most successfully approached by the application of modern mass spectrometric methods in combination with specific chemical treatments aimed at identifying specific chemical moieties. This review presents an overview of these methods as they are being used for the structural elucidation of LCOs, and discusses the role of structural diversity in mediating species-specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1098-2787(1998)17:2<75::AID-MAS1>3.0.CO;2-U | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA. Electronic address:
The integrated stress response (ISR) is a cellular defense mechanism activated under stress conditions. When the ISR is activated, it slows the production of proteins, the building blocks that cells need to function. Trans-integrated stress response inhibitor (trans-ISRIB) is a compound that can reverse the effects of ISR activation, showing promise for treating neurodegenerative diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany.
Background: The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (M) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2 and SARS-CoV-2 than two M inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2 replication without ritonavir in B6.
View Article and Find Full Text PDFACS Omega
January 2025
Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
RNA undergoes oxidatively induced damage in living organisms analogous to DNA. RNA is even more vulnerable to damage than DNA due to its greater abundance, single-strandedness, lack of repair and chromatin proteins shield, and instability, among other effects. RNA damage can adversely affect gene expression, leading to protein synthesis alterations, cell death, and other detrimental biological consequences.
View Article and Find Full Text PDFBioanalysis
January 2025
Quantitative Pharmacology, Bicycle Therapeutics, Cambridge, MA, USA.
Background: The Bicycle® toxin conjugate (BTC) zelenectide pevedotin, formerly known as BT8009, is a novel bicyclic peptide targeting the Nectin-4 tumor antigen conjugated to the cytotoxin monomethyl auristatin E (MMAE) via a valine-citrulline cleavable linker. Zelenectide pevedotin is currently being investigated in a Phase 1/2 (Duravelo-1, NCT04561362) clinical trial to determine safety and efficacy in patients with tumors associated with Nectin-4 expression. A simple regulated bioanalytical assay was developed to quantify intact zelenectide pevedotin in patient plasma samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!