Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.39.5139 | DOI Listing |
PLoS One
January 2025
School of Petrochemical Engineering, Changzhou University, Changzhou, China.
The influence of varying hydrogen content on the microstructure, mechanical properties, and fracture behavior of the metastable β titanium alloy TB8 after hydrogen charging has been investigated in this study. Several characterization methods, including optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were employed to comprehensively analyze the alloy. The results show that with the addition of hydrogen, hydrogen mainly accumulated at grain boundaries in the form of hydrides.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA.
The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.
Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Highly stable calcium ion selective electrodes (Ca-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca-ISEs exhibited excellent electrochemical performance.
View Article and Find Full Text PDFCereb Cortex
January 2025
School of AIDE, Center for Brain Science and Applications, IIT Jodhpur, NH-62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India.
Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!