Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.39.4808DOI Listing

Publication Analysis

Top Keywords

ferromagnetism icosahedral
4
icosahedral al-mn-si
4
al-mn-si alloys
4
ferromagnetism
1
al-mn-si
1
alloys
1

Similar Publications

The synthesis and structural characterisation of [Ln(Tp)]I (1-Ln; Ln = La, Ce, Pr, Nd) (Tp = hydrotris(3-(2'-furyl)-pyrazol-1-yl)borate) have been reported as an isomorphous series adopting pseudo-icosahedral ligand field geometries. Continuous shape measurement (CShM) analyses on the crystal field environments of 1-Ln show the smallest values yet reported for complexes employing two hexadentate ligands (-scorpionate environments), with the smallest belonging to 1-La. Single-ion magnetism for 1-Ce, 1-Pr and 1-Nd was probed with ac magnetic susceptibility studies revealing slow magnetic relaxation for 1-Nd in applied magnetic fields and in zero-applied field for 1-Ce, which is a rare observation for Ce(III)-based single-ion magnets.

View Article and Find Full Text PDF

Synthesis and characterization of iron clusters with an icosahedral [Fe@Fe] Core.

Natl Sci Rev

April 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)WS(Fe@Fe) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fe) and peripheral irons (Fe), as well as Fe···Fe ferromagnetic coupling.

View Article and Find Full Text PDF

We discovered a ferromagnetic Au-Ga-Dy icosahedral quasicrystal (i QC), not only with high phase purity but also with tunable composition. The isothermal magnetization of the polycrystalline ferromagnetic i QC was closely investigated and the mean-field-like nature of the ferromagnetic transition is elucidated. Moreover, the maximum Weiss temperature (θ_{p}) of the i QCs was found at the electrons-per-atom (e/a) ratio of 1.

View Article and Find Full Text PDF

Magnetic dynamics of hedgehog in icosahedral quasicrystal.

Sci Rep

September 2022

Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 804-8550, Japan.

Quasicrystals (QCs) possess a unique lattice structure without translational invariance, which is characterized by the rotational symmetry forbidden in periodic crystals such as the 5-fold rotation. Recent discovery of the ferromagnetic (FM) long-range order in the terbium-based QC has brought about breakthrough but the magnetic structure and dynamics remain unresolved. Here, we reveal the dynamical as well as static structure of the FM hedgehog state in the icosahedral QC.

View Article and Find Full Text PDF

Magnetic dynamics of ferromagnetic long range order in icosahedral quasicrystal.

Sci Rep

June 2022

Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 804-8550, Japan.

Quasicrystals lack translational symmetry and have unique lattice structures with rotational symmetry forbidden in periodic crystals. The electric state and physical property are far from complete understanding, which are the frontiers of modern matter physics. Recent discovery of the ferromagnetic long-range order in the rare-earth based icosahedral quasicrystal has made the breakthrough.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!