Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.39.1415 | DOI Listing |
ACS Nano
January 2025
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, Texas 75080, United States.
Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.
The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
Department of Physics, Umeå University, Linnaeus väg 24, 901 87 Umeå, Sweden.
Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!