Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.39.9091DOI Listing

Publication Analysis

Top Keywords

formation 110-k
4
110-k superconducting
4
superconducting phase
4
phase amorphous
4
amorphous state
4
state bi-sr-ca-cu-o
4
bi-sr-ca-cu-o system
4
formation
1
superconducting
1
phase
1

Similar Publications

Introduction: commonly causes healthcare-associated infections and shows multidrug resistance. can produce biofilm. Carbapenem resistance in is due to the production of carbapenemases mainly.

View Article and Find Full Text PDF
Article Synopsis
  • Metal-oxide interfaces are important for catalytic processes, especially in methanol reactions on the CeO/Ag(111) catalyst surfaces studied under ultrahigh vacuum (UHV) conditions.
  • Scanning tunneling microscopy and other techniques revealed that submonolayer CeO films form a hexagonal lattice with fully oxidized cerium, while higher ceria coverages lead to multilayer formations.
  • Methanol interacts with these surfaces to create methoxy groups, which can decompose into formate or formaldehyde, with the submonolayer CeO exhibiting significantly lower temperatures for methoxy dehydrogenation compared to multilayer structures, highlighting the unique catalytic properties of the CeO-Ag(111) interface.
View Article and Find Full Text PDF

Nitrogen-containing polycyclic aromatic hydrocarbons (NPAHs) are important molecules for astrochemistry and prebiotic chemistry, as their occurrence spans from interstellar molecular clouds to planetary systems. Their formation has been previously explored in gas phase experiments, but the role of solid-state chemical reactions in their formation under cryogenic conditions remains elusive. Here, we explore the formation of NPAHs through vacuum ultraviolet (VUV) irradiation of pyridine:acetylene ices in amorphous and co-crystalline phases, with the aim to simulate conditions relevant to the interstellar medium and Titan's atmosphere.

View Article and Find Full Text PDF

High-field magic angle spinning (MAS) dynamic nuclear polarization (DNP) is becoming a common technique for improving the sensitivity of solid-state nuclear magnetic resonance (SSNMR) by the hyperpolarization of nuclear spins. Recently, we have shown that gamma irradiation is capable of creating long-lived free radicals that are amenable to MAS DNP in quartz and a variety of organic solids. Here, we demonstrate that ball milling is able to generate millimolar concentrations of stable radical species in diverse materials such as polystyrene, cellulose, borosilicate glass, and fused quartz.

View Article and Find Full Text PDF

The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at T ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below T ≈ 110 K, and finally forms a c-axis double cone AFM structure around T ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above T and T that merge into gapped commensurate spin waves from the A-type AFM order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!