Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.38.4307DOI Listing

Publication Analysis

Top Keywords

picosecond infrared
4
infrared spectroscopy
4
spectroscopy hot
4
hot carriers
4
carriers modulation-doped
4
modulation-doped ga047in053as
4
ga047in053as multiple-quantum-well
4
multiple-quantum-well structure
4
picosecond
1
spectroscopy
1

Similar Publications

We report a high peak power mid-infrared (MIR) source via efficient optical parametric generation (OPG) in a piece of 50-mm-long MgO: PPLN crystal pumped by using a near-infrared (NIR) narrow-band picosecond laser source. The highest peak power of the idler pulse can reach ∼109.86 kW with a duration of ∼7.

View Article and Find Full Text PDF

We report on a multi-watt, high-repetition-rate picosecond 1.7 µm Tm-doped fiber (TDF) laser amplification system. The seed oscillator is a figure-9 passively mode-locked TDF laser, which delivers a pulse train with a center wavelength of 1738nm and a fundamental repetition rate of ∼85 MHz.

View Article and Find Full Text PDF

Photocycloreversion reactions of three diarylethene derivatives whose structures differ only in the placement of two sulfur atoms in the cyclopentene rings are investigated. Despite the minuscule differences between the molecules, both the yields and times of the photoreactions vary considerably. Using UV-vis and infrared femtosecond spectroscopy and quantum chemical dynamics simulations, we elucidate the relationships among the quantum yield, electronic and vibrational relaxation time, and structural properties of the dithienylethene photoswitches.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!