Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.38.11673 | DOI Listing |
ACS Nano
January 2025
Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic.
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).
View Article and Find Full Text PDFBiomater Sci
January 2025
School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs.
View Article and Find Full Text PDFSci Rep
January 2025
Leiden University, Leiden, Netherlands.
This paper introduces a novel approach for identifying dynamic triadic transformation processes, applied to five networks: three undirected and two directed. Our method significantly enhances the prediction accuracy of network ties. While balance theory offers insights into evolving patterns of triadic structures, its effects on overall network dynamics remain underexplored.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.
Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.
View Article and Find Full Text PDFNeuroimage
January 2025
College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:
Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!