Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.38.10128DOI Listing

Publication Analysis

Top Keywords

ultralow-temperature behavior
4
behavior =5/2
4
=5/2 fractional
4
fractional quantum
4
quantum hall
4
ultralow-temperature
1
=5/2
1
fractional
1
quantum
1
hall
1

Similar Publications

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Article Synopsis
  • The study highlights the impressive lithium ionic conductivity achieved using graphene oxide laminar membranes, which significantly exceeds that of traditional lithium-ion electrolytes.
  • At 170 mS cm, the nanoconfined lithium electrolyte demonstrates extraordinary performance, maintaining useful conductivity even at extremely low temperatures.
  • The findings suggest that the enhanced ion transport is due to unique layer distribution effects in the nanochannels, potentially revolutionizing energy storage technologies by integrating these channels into lithium battery components.
View Article and Find Full Text PDF

Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.

View Article and Find Full Text PDF

The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr/NbSe ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr/NbSe by an ultralow temperature scanning tunneling microscope with higher spatial and energy resolutions.

View Article and Find Full Text PDF

Conductive hydrogel is considered to be one of the most potential sensing materials for wearable strain sensors. However, both the hydrophilicity of polymer chains and high water content severely inhibit the potential applications of hydrogel-based sensors in extreme conditions. In this study, a multicross-linked hydrogel was prepared by simultaneously introducing a double-network matrix, multiple conductive fillers, and free-moving ions, which can withstand an ultralow temperature below -80 °C.

View Article and Find Full Text PDF

Unlocking Fast Potassium Ion Kinetics: High-Rate and Long-Life Potassium Dual-Ion Battery for Operation at -60 °C.

Angew Chem Int Ed Engl

September 2024

State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.

Energy storage devices operating at low temperatures are plagued by sluggish kinetics, reduced capacity, and notorious dendritic growth. Herein, novel potassium dual-ion batteries (PDIBs) capable of superior performance at -60 °C, and fabricated by combining MXenes and polytriphenylamine (PTPAn) as the anode and cathode, respectively, are presented. Additionally, the reason for the anomalous kinetics of K (faster at low temperature than at room temperature) on the TiC anode is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!