Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.38.8131DOI Listing

Publication Analysis

Top Keywords

anomalous high-frequency
4
high-frequency modes
4
modes "missing-row"
4
"missing-row" reconstructed
4
reconstructed 110
4
110 surfaces
4
anomalous
1
modes
1
"missing-row"
1
reconstructed
1

Similar Publications

Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia. Electronic address:

To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h-PAC and d-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed.

View Article and Find Full Text PDF

Meta-atoms: From Metamaterials to Metachips.

Research (Wash D C)

January 2025

State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211189, China.

Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials.

View Article and Find Full Text PDF

The introduction of heterovalent metal ion doping in the lead (Pb) halide perovskites presents a novel opportunity to manipulate the electronic and ionic properties by introducing dopant charges and increasing the carrier concentration in single crystals. While previous studies have reported on the use of bismuth (Bi) doping in methylammonium lead tribromide (MAPbBr) to adjust the optical properties, the comprehensive impact of Bi doping on the structural and electronic properties of MAPbBr single crystals remains unexplored. This research, therefore, delves into the anomalous behavior of the structural, optical, and electrical properties of pristine and doped MAPbBr single crystals through a combination of experimental and computational studies.

View Article and Find Full Text PDF

As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.

View Article and Find Full Text PDF

Spintronic devices and applications using noncollinear chiral antiferromagnets.

Nanoscale Horiz

December 2024

Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, USA.

Antiferromagnetic materials have several unique properties, such as a vanishingly small net magnetization, which generates weak dipolar fields and makes them robust against perturbation from external magnetic fields and rapid magnetization dynamics, as dictated by the geometric mean of their exchange and anisotropy energies. However, experimental and theoretical techniques to detect and manipulate the antiferromagnetic order in a fully electrical manner must be developed to enable advanced spintronic devices with antiferromagnets as their active spin-dependent elements. Among the various antiferromagnetic materials, conducting antiferromagnets offer high electrical and thermal conductivities and strong electron-spin-phonon interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!