Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.37.1499DOI Listing

Publication Analysis

Top Keywords

long-range coulomb
4
coulomb interactions
4
interactions superconducting
4
superconducting transition
4
transition josephson-junction
4
josephson-junction arrays
4
long-range
1
interactions
1
superconducting
1
transition
1

Similar Publications

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Living systems cannot rely on random intermolecular approaches toward cell crowding, and hidden mechanisms must be present to favor only those molecular interactions required explicitly by the biological function. Electromagnetic messaging among proteins is proposed from the observation that charged amino acids located on the protein surface are mostly in adjacent sequence positions and/or in spatial proximity. Molecular dynamics (MD) simulations have been used to predict electric charge proximities arising from concerted motions of charged amino acid side chains in two protein model systems, human ubiquitin and the chitinolytic enzyme from .

View Article and Find Full Text PDF
Article Synopsis
  • Excitons, which are pairs of electrons and holes held together by Coulomb forces, can form a superfluid at low temperatures due to their bosonic properties.
  • The research involves directly imaging this exciton superfluid in a specific material setup (MoSe-WSe heterostructure), demonstrating a significant level of order across the sample.
  • The study also details how variations in exciton density and temperature help construct a phase diagram, revealing that the superfluid state can persist up to 15 K, aligning well with theoretical expectations and paving the way for advancements in quantum devices and superfluid research.
View Article and Find Full Text PDF

Lattice-based mean-field models of ionic liquids neglect charge discreteness and ion correlations. To address these limitations, we propose separating the short-range and long-range parts of the electrostatic interaction by truncating the Coulomb potential below a fixed distance that is equal to or slightly larger than that between neighboring ions. Interactions and correlations between adjacent ions can then be modeled explicitly, whereas longer-ranged electrostatic interactions are captured on the mean-field level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!