Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.37.9447DOI Listing

Publication Analysis

Top Keywords

helium tritium
4
tritium protium
4
protium nmr
4
nmr studies
4
studies tritide-free
4
tritide-free aged
4
aged pdtx
4
helium
1
protium
1
nmr
1

Similar Publications

The impact of freshwater sources like surface river runoff and submarine groundwater discharge (SGD) on coastal waters is currently in focus of intense debate and investigation. One of the ongoing challenges in SGD research is the characterization and quantification of the freshwater endmember contributions to the subsurface mixing zone and their influences on element balance and biogeochemical transformations. Long-term investigations of the sediment porewater composition provide characterization and understanding of the physical, hydrological and biogeochemical processes controlling the substance exchanges.

View Article and Find Full Text PDF

A key ingredient for realizing a magnetically confined tritium-deuterium plasma fusion reactor is plasma heating by fusion-born high-energy helium ions, as a chained cycle of "nuclear burning." Efficient collisionless plasma heating by high-energy particles is anticipated when their energy is directly transferred to the plasma through waves. Those processes often involve nonlinear structure formations in phase-space, spanned by real-space and velocity-space coordinates, that significantly influence heating efficiency.

View Article and Find Full Text PDF

Neutron imaging of the deuterium-tritium tamping gas volume in an inertial confinement fusion hohlraum.

Rev Sci Instrum

October 2024

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

To benchmark the accuracy of the models and improve the predictive capability of future experiments, the National Ignition Facility requires measurements of the physical conditions inside inertial confinement fusion hohlraums. The ion temperature and bulk motion velocity of the gas-filled regions of the hohlraum can be obtained by replacing the helium tamping gas in the hohlraum with deuterium-tritium (DT) gas and measuring the Doppler broadening and Doppler shift of the neutron spectrum produced by nuclear reactions in the hohlraum. To understand the spatial distribution of the neutron production inside the hohlraum, we have developed a new penumbral neutron imager with a 12 mm diameter field of view using a simple tungsten alloy spindle.

View Article and Find Full Text PDF

Understanding groundwater contamination patterns is hampered by the heterogeneous groundwater age and redox status over the depth range typically sampled for identifying pesticides and emerging contaminants threats. This study explores depth patterns of groundwater age and redox status across various land use types, unraveling spatial and temporal trends of pesticides and emerging contaminants using data from groundwater quality monitoring in the south of the Netherlands. The Netherlands is an ideal testing ground due to its high population density and widespread groundwater contamination from multiple sources.

View Article and Find Full Text PDF

Beryllium (Be) has been selected as the solid neutron multiplier material for a tritium breeding blanket module in ITER, which is also the primary option of the Chinese TBM program. But the irradiation swelling of beryllium is severe under high temperature, high irradiation damage and high doses of transmutation-induced helium. Advanced neutron multipliers with high stability at high temperature are desired for the demonstration power plant (DEMO) reactors and the China Fusion Engineering Test Reactor (CFETR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!