Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.36.3920DOI Listing

Publication Analysis

Top Keywords

twins oriented
4
oriented domains
4
domains orthorhombic
4
orthorhombic superconductor
4
superconductor yba2cu
4
twins
1
domains
1
orthorhombic
1
superconductor
1
yba2cu
1

Similar Publications

The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.

View Article and Find Full Text PDF

In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.

View Article and Find Full Text PDF

Highly efficient electroplating of (220)-oriented nano-twinned copper in methanesulfonic copper baths.

Mater Horiz

January 2025

Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.

The formation of a high-density nanotwinned structure in copper deposits is presently acknowledged as a paramount goal for enhancing the material characteristics of copper. However, the conventional manufacturing processes often involve the incorporation of organic additives, resulting in consequential impurity effects and aging concerns. In this work, we introduce a high-rate approach to fabricate (220)-orientation nanotwinned copper foils in a concentrated methanesulfonate copper solution with mere amount of chloride ions as additives.

View Article and Find Full Text PDF

A Matlab Toolbox for cardiac electrophysiology simulations on patient-specific geometries.

Comput Biol Med

February 2025

Research Center E. Piaggio, University of Pisa, L. Lazzarino, 1, Pisa, 56122, Italy; Information Engineering Department, University of Pisa, G. Caruso, 16, Pisa, 56122, Italy.

In this paper, we present CardioMat, a Matlab toolbox for cardiac electrophysiology simulation based on patient-specific anatomies. The strength of CardioMat is the easy and fast construction of electrophysiology cardiac digital twins from segmented anatomical images in a general-purpose software such as Matlab. CardioMat implements a quasi-automatic pipeline that guides the user toward the construction of anatomically detailed cardiac electrophysiology models.

View Article and Find Full Text PDF
Article Synopsis
  • The text examines phase transitions, specifically martensitic transformations, which involve the movement of atoms in a coherent way to shift from one crystalline structure to another, and highlights recent experimental observations in soft materials.
  • The study utilizes direct simulations of a liquid crystalline blue phase (BP II) to analyze the dynamic transition to another phase (BP I) through a machine-learning approach to identify local structures and defects.
  • Findings reveal that this transformation can be triggered by the breakup of line defect junctions and can be reversed by changing temperature, shedding light on complex structural changes in ordered materials more broadly.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!