Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.35.4145DOI Listing

Publication Analysis

Top Keywords

intersubband energies
4
energies gaas-ga1-xalxas
4
gaas-ga1-xalxas heterojunctions
4
intersubband
1
gaas-ga1-xalxas
1
heterojunctions
1

Similar Publications

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si Ge alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile.

View Article and Find Full Text PDF

Intersubband transitions in semiconductor heterostructures offer a way to achieve large and designable nonlinearities with dynamic modulation of intersubband energies through the Stark effect. One promising approach for incorporating these nonlinearities into free space optics is a nonlinear polaritonic metasurface, which derives resonant coupling between intersubband nonlinearities and optical modes in nanocavities. Recent work has shown efficient frequency mixing at low pumping intensities, with the ability to electrically tune the phase, amplitude, and spectral peak of it.

View Article and Find Full Text PDF

Near-Infrared Light-Driven CO Reduction on Cup-Stacked Carbon Nanotubes.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Fine Chemicals, School of Chemistry, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.

Carbon nanotubes feature one-dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup-stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge-plane sites. The localized p electronic states and accessible intersubband plasmon excitations in the near-infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo-induced force microscopy (PiFM) and transient photocurrent response.

View Article and Find Full Text PDF

Binding Energies and Optical Properties of Power-Exponential and Modified Gaussian Quantum Dots.

Molecules

June 2024

Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA 92521, USA.

We examine the optical and electronic properties of a GaAs spherical quantum dot with a hydrogenic impurity in its center. We study two different confining potentials: (1) a modified Gaussian potential and (2) a power-exponential potential. Using the finite difference method, we solve the radial Schrodinger equation for the 1s and 1p energy levels and their probability densities and subsequently compute the optical absorption coefficient (OAC) for each confining potential using Fermi's golden rule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!