Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.35.2667DOI Listing

Publication Analysis

Top Keywords

near-edge x-ray-absorption
4
x-ray-absorption fine
4
fine structure
4
structure uranium
4
uranium compounds
4
near-edge
1
fine
1
structure
1
uranium
1
compounds
1

Similar Publications

We investigate magnesium-iron pyroborate MgFeBO as a potential cathode material for rechargeable magnesium-ion batteries. Synchrotron powder X-ray diffraction and Mössbauer spectroscopy confirm its successful synthesis and iron stabilization in the high-spin Fe(II) state. Initial electrochemical testing against a lithium metal anode yields a first charge capacity near the theoretical value (147.

View Article and Find Full Text PDF

This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

The determination of three-dimensional structures (3D structures) is crucial for understanding the correlation between the structural attributes of materials and their functional performance. X-ray absorption near edge structure (XANES) is an indispensable tool to characterize the atomic-scale local 3D structure of the system. Here, we present an approach to simulate XANES based on a customized 3D graph neural network (3DGNN) model, XAS3Dabs, which takes directly the 3D structure of the system as input, and the inherent relation between the fine structure of spectrum and local geometry is considered during the model construction.

View Article and Find Full Text PDF

Fluorinated graphdiyne (F-GDY) materials exhibit exceptional performance in various applications, such as luminescent devices, electron transport, and energy conversion. Although F-GDY has been successfully synthesized, there is a lack of comprehensive identification of fluorinated configurations, either by theory or experiment. In this work, we investigated seven representative F-GDY configurations with low dopant concentrations and simulated their carbon and fluorine 1s X-ray photoelectron spectroscopy (XPS) and carbon 1s near-edge X-ray absorption fine-structure (NEXAFS) spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!