Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.35.7749DOI Listing

Publication Analysis

Top Keywords

energetics charged
4
charged small
4
small metal
4
metal particles
4
energetics
1
small
1
metal
1
particles
1

Similar Publications

Influence of pyridinic nitrogen on tautomeric shifts and charge transport in single molecule keto enol equilibria.

Sci Rep

January 2025

Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.

Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable.

View Article and Find Full Text PDF

Interfacial Properties of Gold and Cobalt Oxyhydroxide in Plasmon-Mediated Oxygen Evolution Reaction.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.

Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.

View Article and Find Full Text PDF

Single atom alloys aggregation in the presence of ligands.

Nanoscale

January 2025

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.

View Article and Find Full Text PDF

Compared with the energetically favorable 5- or 6-membered fluoro-functionalized heterocycles, the construction of medium-sized fluoro-heterocycles is relatively under-researched because of their inherently unfavorable enthalpic and entropic nature. Based on rational design and DFT calculations, a novel photocatalytic difluoromethyl radical-initiated intramolecular 7--trig cyclization was realized, thus affording a sustainable route for the synthesis of challenging fluoro-functionalized medium-sized -heterocycles. Depending on atomic dipole moment corrected Hirshfeld population (ADCH) charge calculations, the chemoselective 6--trig radical cyclizations were further replenished.

View Article and Find Full Text PDF

A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!