Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.34.4726DOI Listing

Publication Analysis

Top Keywords

elastic neutron
4
neutron x-ray
4
x-ray scattering
4
scattering studies
4
studies incommensurate
4
incommensurate gamma
4
gamma phase
4
phase c3h7nh32mncl4
4
elastic
1
x-ray
1

Similar Publications

Article Synopsis
  • Incorporating nanomaterials into hydrogels allows for the creation of customizable materials with adjustable properties based on their nanoscale structures.
  • This study explores the relationship between the structural arrangement and properties of a composite hydrogel made from thermoresponsive polymer, gelatin, and antimicrobial light-responsive gold nanorods (PAuNRs).
  • Findings indicate that the addition of PAuNRs leads to a softer hydrogel with reduced elasticity, which can be tailored for specific biomedical applications like tissue engineering and drug delivery.
View Article and Find Full Text PDF

We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.

View Article and Find Full Text PDF

Effects of Different Concentrations of AmB on the Unsaturated Phospholipid-Cholesterol Membrane Using the Langmuir Monolayer and Liposome Models.

Molecules

November 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.

Article Synopsis
  • Amphotericin B (AmB) causes toxicity to red blood cell membranes, leading to hemolysis and limiting its effective use in treating invasive fungal infections.
  • The study investigated how different concentrations of AmB (5, 45, 85, and 125 μg/mL) interact with unsaturated phospholipid membranes containing cholesterol, using methods like the Langmuir model and fluorescence techniques.
  • Findings revealed that as AmB concentration increases, it not only alters the organization and elasticity of the membrane but also affects the balance between hydrophobic and hydrophilic domains, particularly when concentrations exceed 85 μg/mL.
View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) constitutes a crucial phenomenon in biological self-organization, not only intervening in the formation of membraneless organelles but also triggering pathological protein aggregation, which is a hallmark in neurodegenerative diseases. Employing incoherent quasi-elastic neutron spectroscopy (QENS), we examine the short-time self-diffusion of a model protein undergoing LLPS as a function of phase splitting and temperature to access information on the nanosecond hydrodynamic response to the cluster formation both within and outside the LLPS regime. We investigate the samples as they dissociate into microdroplets of a dense protein phase dispersed in a dilute phase as well as the separated dense and dilute phases obtained from centrifugation.

View Article and Find Full Text PDF

Absence of bulk charge density wave order in the normal state of UTe.

Nat Commun

November 2024

Los Alamos National Laboratory, Los Alamos, NM, USA.

A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, T. Whether the PDW is the mother or a subordinate order remains unsettled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!