Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.34.2212DOI Listing

Publication Analysis

Top Keywords

inertial dynamics
4
dynamics pinned
4
pinned charge-density-wave
4
charge-density-wave condensates
4
condensates nbse3
4
inertial
1
pinned
1
charge-density-wave
1
condensates
1
nbse3
1

Similar Publications

Dual Open Atom Interferometry for Compact and Mobile Quantum Sensing.

Phys Rev Lett

December 2024

The Australian National University, Department of Quantum Science and Technology, Canberra, Australian Capital Territory 2601, Australia.

We demonstrate an atom interferometer measurement protocol compatible with operation on a dynamic platform. Our method employs two open interferometers, derived from the same atomic source, with different interrogation times to eliminate initial velocity dependence while retaining precision, accuracy, and long term stability. We validate the protocol by measuring gravitational tides, achieving a precision of 4.

View Article and Find Full Text PDF

Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.

View Article and Find Full Text PDF

Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals.

View Article and Find Full Text PDF

Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography.

Ultrason Sonochem

January 2025

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129 Turin, Italy. Electronic address:

In the context of molecular imaging, the present work explores an innovative platform made of lipid-coated nanocrystals as contrast-enhanced agent for both ultrasound imaging and sonoluminescence. At first, the dynamics of gas bubbles generation and cavitation under insonation with either pristine or lipid-coated nanocrystals (ZnO-Lip) are described, and the differences between the two colloidal systems are highlighted. These ZnO-Lip show an unprecedented ability to assist cavitation, which is reflected in enhanced sonoluminescent light emission with respect to the pristine nanocrystals or the pure water.

View Article and Find Full Text PDF

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!