Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.32.1394DOI Listing

Publication Analysis

Top Keywords

surface morphology
4
morphology gaas110
4
gaas110 scanning
4
scanning tunneling
4
tunneling microscopy
4
surface
1
gaas110
1
scanning
1
tunneling
1
microscopy
1

Similar Publications

The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.

View Article and Find Full Text PDF

Background: Focal nodular hyperplasia (FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse. Although pathologically similar to hepatocellular carcinoma (HCC) lesions, they are benign. As such, it is important to develop methods to distinguish between FNH-like lesions and HCC.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.

View Article and Find Full Text PDF

Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!