Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.31.2776 | DOI Listing |
J Phys Chem A
January 2025
School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
The formalism to calculate excited state properties from the GW-Bethe-Salpeter equation (BSE) method is introduced, providing convenient access to excited state absorption, excited state circular dichroism, and excited state optical rotation in the framework of the GW-BSE method. This is achieved using the second-order transition density, which can be obtained by solving a set of auxiliary equations similar to time-dependent density functional theory (TD-DFT). The proposed formulation therefore leads to no increase in the formal computational complexity when compared to the corresponding ground state properties.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan.
Small
November 2024
Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA.
Valleytronics, harnessing the valley degree of freedom in the momentum space, is a potential energy-efficient approach for information encoding, manipulation, and storage. Valley degree of freedom exists in a few conventional semiconductors, but recently the emerging 2D materials, such as monolayer transition-metal dichalcogenides (TMDs), are considered more ideal for valleytronics, due to the additional protection from spin-valley locking enabled by their inversion symmetry breaking and large spin-orbit coupling. However, current limitations in the valley lifetime, operation temperature, and light-valley conversion efficiency in existing materials encumber the practical applications of valleytronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!