During HIV reverse transcription, (+) strand DNA synthesis is primed by an RNase H-resistant sequence, the polypurine tract, and continues as far as a 18-nt double-stranded RNA region corresponding to the 3' end of tRNALys,3 hybridized to the viral primer binding site (PBS). Before (+) strand DNA transfer, reverse transcriptase (RT) needs to unwind the double-stranded tRNA-PBS RNA in order to reverse-transcribe the 3' end of primer tRNALys,3. Since the detailed mechanism of (+) strand DNA transfer remains incompletely understood, we developed an in vitro system to closely examine this mechanism, composed of HIV 5' RNA, natural modified tRNALys,3, synthetic unmodified tRNALys,3 or oligonucleotides (RNA or DNA) complementary to the PBS, as well as the viral proteins RT and nucleocapsid protein (NCp7). Prior to (+) strand DNA transfer, RT stalls at the double-stranded tRNA-PBS RNA complex and is able to reverse-transcribe modified nucleosides of natural tRNALys,3. Modified nucleoside m1A-58 of natural tRNALys,3 is only partially effective as a stop signal, as RT can transcribe as far as the hyper-modified adenosine (ms2t6A-37) in the anticodon loop. m1A-58 is almost always transcribed into A, whereas other modified nucleosides are transcribed correctly, except for m7G-46, which is sometimes transcribed into T. In contrast, synthetic tRNALys,3, an RNA PBS primer, and a DNA PBS primer are completely reverse-transcribed. In the presence of an acceptor template, (+) strand DNA transfer is efficient only with templates containing natural tRNALys,3 or the RNA PBS primer. Sequence analysis of transfer products revealed frequent errors at the transfer site with synthetic tRNALys,3, not observed with natural tRNALys,3. Thus, modified nucleoside m1A-58, present in all retroviral tRNA primers, appears to be important for both efficacy and fidelity of (+) strand DNA transfer. We show that other factors such as the nature of the (-) PBS of the acceptor template and the RNase H activity of RT also influence the efficacy of (+) strand DNA transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.7.4412DOI Listing

Publication Analysis

Top Keywords

strand dna
32
dna transfer
28
natural trnalys3
16
pbs primer
12
trnalys3
11
dna
10
transfer
9
primer trnalys3
8
strand
8
efficacy strand
8

Similar Publications

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

[Gene editing is changing the treatment of hereditary diseases].

Lakartidningen

January 2025

docent, verksamhetschef, Karolinska centrum för cellterapi (KCC), Karolinska universitetssjukhuset, Stockholm; Karolins-ka ATMP-centrum; institutionen för laboratorie-medicin, Karolinska institutet.

Gene editing is a novel technology within gene therapy, which changes sequences in chromosomal DNA with precision. Even if there are alternative strategies, the Nobel Prize-winning CRISPR/Cas technology has become the dominating principle. During recent years base editing and prime editing, permitting editing without DNA double-strand breaks, have been developed.

View Article and Find Full Text PDF

An evolved, orthogonal ssDNA generator for targeted hypermutation of multiple genomic loci.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Achieving targeted hypermutation of specific genomic sequences without affecting other regions remains a key challenge in continuous evolution. To address this, we evolved a T7 RNA polymerase (RNAP) mutant that synthesizes single-stranded DNA (ssDNA) instead of RNA in vivo, while still exclusively recognizing the T7 promoter. By increasing the error rate of the T7 RNAP mutant, it generates mutated ssDNA that recombines with homologous sequences in the genome, leading to targeted genomic hypermutation.

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!