Studies performed in mice together with the demonstration of increased levels of heart-specific autoantibodies, cytokines and cytokine receptors in sera from cardiomyopathy (CMP) patients argued for a pathogenic role of autoimmune mechanisms in CMP. This study was designed to analyse the presence of IgG anti-heart antibodies in sera from patients suffering from hypertrophic and dilatative forms of CMP as well as from patients with ischaemic heart disease and healthy individuals. Patients' sera were analysed for IgG reactivity to Western-blotted extracts prepared from human epithelial and endothelial cells, heart and skeletal muscle specimens as well as from Streptococcus pyogenes. The IgG subclass (IgG1-4) reactivity to purified human cardiac myosin was analysed by ELISA. While sera from CMP patients and healthy individuals displayed comparable IgG reactivity to a variety of human proteins, cardiac myosin represented the prominent antigen detected strongly and preferentially by sera from CMP patients. Pronounced IgG anti-cardiac myosin reactivity was frequently found in sera from patients with dilatative CMP and reduced ventricular function. ELISA analyses revealed a prominent IgG2/IgG3 anti-cardiac myosin reactivity in CMP sera, indicating a preferential Th1-like immune response. Elevated anti-cytomegalovirus, anti-enterovirus IgG titres as well as IgG reactivity to nitrocellulose-blotted S. pyogenes proteins were also frequently observed in the group of CMP patients. If further work can support the hypothesis that autoreactivity to cardiac myosin represents a pathogenic factor in CMP, specific immunomodulation of this Th1- towards a Th2-like immune response may represent a promising therapeutic strategy for CMP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905170 | PMC |
http://dx.doi.org/10.1046/j.1365-2249.1999.00807.x | DOI Listing |
ESC Heart Fail
January 2025
Department of Cardiology, Stavanger University Hospital, Stavanger, Norway.
Background: Cardiac myosin binding protein C (cMyC) is an emerging new biomarker of myocardial injury rising earlier and cleared faster than cardiac troponins. It has discriminatory power similar to high-sensitive troponins in diagnosing myocardial infarction in patients presenting with chest pain. It is also associated with outcome in patients with acute heart failure.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).
Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.
Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.
Front Physiol
January 2025
Institute of Vegetative Physiology, University of Cologne, Köln, Germany.
Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.
Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.
Biophys Rev
December 2024
Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK.
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnC) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Orthopedics, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, 214000, China. Electronic address:
This study systematically evaluated the toxic effects of fluconazole on the cardiovascular development of zebrafish. Zebrafish embryos were treated with different concentrations of fluconazole (200, 400, and 800 μg/ml) to observe its impact on heart development, reactive oxygen species (ROS) generation, apoptosis, and hemoglobin production. The results showed that as the concentration of fluconazole increased, significant changes in zebrafish heart structure were observed, along with a notable reduction in heart rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!