Purpose: To compare changes in the corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis.
Methods: In a prospective randomized study, 22 patients with bilateral myopia received photorefractive keratectomy on one eye and laser in situ keratomileusis on the other eye. The procedure assigned to each eye and the sequence of surgery for each patient were randomized. Corneal topography measurements were performed preoperatively, 2 and 6 weeks, 3, 6, and 12 months after surgery. The data were used to calculate the wavefront aberrations of the cornea for both small (3-mm) and large (7-mm) pupils.
Results: Both photorefractive keratectomy and laser in situ keratomileusis significantly increased the total wavefront aberrations for 3- and 7-mm pupils, and values did not return to the preoperative level throughout the 12-month follow-up period. For a 3-mm pupil, there was no statistically significant difference between photorefractive keratectomy and laser in situ keratomileusis at any postoperative point. For a 7-mm pupil, the post-laser in situ keratomileusis eyes exhibited significantly larger total aberrations than the post-photorefractive keratectomy eyes, where a significant intergroup difference was observed for spherical-like aberration, but not for coma-like aberration. This discrepancy seemed to be attributable to the smaller transition zone of the laser ablation in the laser in situ keratomileusis procedure. Before surgery, simulated pupillary dilation from 3 to 7 mm caused a five- to six-fold increase in the total aberrations. After surgery, the same dilation resulted in a 25- to 32-fold increase in the photorefractive keratectomy group and a 28- to 46-fold increase in the laser in situ keratomileusis group. For a 3-mm pupil, the proportion of coma-like aberration increased after both photorefractive keratectomy and laser in situ keratomileusis. For a 7-mm pupil, coma-like aberration was dominant before surgery, but spherical-like aberration became dominant postoperatively.
Conclusions: Both photorefractive keratectomy and laser in situ keratomileusis increase the wavefront aberrations of the cornea and change the relative contribution of coma- and spherical-like aberrations. For a large pupil, laser in situ keratomileusis induces more spherical aberrations than photorefractive keratectomy. This finding could be attributable to the smaller transition zone of the laser ablation in the laser in situ keratomileusis procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0002-9394(98)00288-8 | DOI Listing |
Br J Ophthalmol
January 2025
Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
Background/aims: To identify the risk factors for neuropathic corneal pain (NCP) following corneal refractive surgery and to report its clinical manifestations, imaging and proteomic characteristics.
Methods: This 1 year prospective cohort study included 100 eyes that underwent small incision lenticule extraction (SMILE) or laser-assisted in situ keratomileusis (LASIK). Ocular surface assessments, in-vivo confocal microscopy scans, tear neuromediators and proteomics analyses were performed.
Acta Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFNano Lett
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Rapid validation of newly predicted materials through autonomous synthesis requires real-time adaptive control methods that exploit physics knowledge, a capability that is lacking in most systems. Here, we demonstrate an approach to enable real-time control of thin film synthesis by combining optical diagnostics with a Bayesian state estimation method. We developed a physical model for film growth and applied the direct filter (DF) method for real-time estimation of nucleation and growth rates during pulsed laser deposition (PLD).
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.
View Article and Find Full Text PDFLaser absorption spectroscopy (LAS) is a well-established measurement technique for quantitative chemical speciation in a combustion environment. However, LAS measurement of nitric oxide (NO) in ammonia flames has never been reported in the literature. This is despite the community's recent strong interest in carbon-neutral ammonia combustion and the associated NO formation problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!