Objective: To assess the practical usefulness of single-cell microelectrode recording (MER) when performing posteroventral pallidotomy.
Methods: A retrospective comparison of the initial, magnetic resonance imaging-derived coordinates of the pallidotomy target to the final, MER-refined lesion coordinates in 132 consecutive pallidotomies was conducted. The time required to perform the procedure and the surgical complications are reported.
Results: MER led to targeting changes in 98% of the cases. In 12%, the MER-refined target was more than 4 mm from the original, image-guided site, which is a targeting error that could adversely affect outcome. Although all components of targeting were affected by MER, laterality and depth were impacted most. The ventral border of the globus pallidus pars interna was located within 1 mm of the magnetic resonance imaging-selected target in only 40% of the cases. On average, only 2.2 MER trajectories were required to perform pallidotomy. During the last 3 years of our study, 85% of the procedures were performed with one or two trajectories. The mean operating time of the operations performed during the last 3 years was 2 hours and 12 minutes. The incidence of intracerebral hemorrhage in our series (1.5%) was no higher than that reported for other large series of stereotactic procedures. No patient suffered an optic tract injury.
Conclusion: MER provides important targeting information for performing pallidotomy. In particular, the micrometric delineation of the ventral border of the globus pallidus pars interna permits safe lesioning of the posteroventral region of the globus pallidus pars interna with little risk of visual field deficit. These data can be obtained efficiently and without increased surgical risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006123-199902000-00036 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.
Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.
Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.
PLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFFront Neurosci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Introduction: Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood.
Methods: The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions.
Acta Neurol Belg
January 2025
Departamento de Radiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil.
J Neurosci
January 2025
Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr. Houghton, MI 49931.
Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!