This paper describes the design principles of a new endoprosthesis made of dense aluminum oxide (A12O3) and implanted without bone cement. Mechanical tests and animal experiments have proved the sufficient mechanical strength of the bone-prosthesis connection as well as the biocompatibility of the material. So far, 12 tumor patients selected according to strict indication criteria have been operated on. Both the clinical-radiologic and the first histological findings available are encouraging. Special reference is made to the first fully ceramic total hip joint endoprostheses implanted in a human without bone cement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.820100604DOI Listing

Publication Analysis

Top Keywords

aluminum oxide
8
bone cement
8
experimental clinical
4
clinical experience
4
experience aluminum
4
oxide endoprostheses
4
endoprostheses paper
4
paper describes
4
describes design
4
design principles
4

Similar Publications

The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values.

View Article and Find Full Text PDF

A localized conversion of aluminum into transparent aluminum oxide by droplet-scale anodization is demonstrated in this work. The anodized region can be contained and controlled on the basis of the electrowetting response of the droplet. A highly uniform and transparent anodized spot was achieved using an anodization voltage of 2 V for 10 min.

View Article and Find Full Text PDF

Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!