Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats.

J Appl Physiol (1985)

Department of Environmental Health Sciences, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore 21205, Maryland, USA.

Published: February 1999

Breath ethane, O2 consumption, and CO2 production were analyzed in 24-mo-old female Fischer 344 rats that had been fed continuously ad libitum (AL) or restricted 30% of AL level (DR) diets since 6 wk of age. Rats were placed in a glass chamber that was first flushed with air, then with a gas mixture containing 12% O2. After equilibration, a sample of the outflow was collected in gas sampling bags for subsequent analyses of ethane and CO2. The O2 and CO2 levels were also directly monitored in the outflow of the chamber. O2 consumption and CO2 production increased for DR rats. Hypoxia decreased O2 consumption and CO2 production for the AL-fed and DR rats. These changes reflect changes in metabolic rate due to diet and PO2. A significant decrease in ethane generation was found in DR rats compared with AL-fed rats. Under normoxic conditions, breath ethane decreased from 2.20 to 1.61 pmol ethane/ml CO2. During hypoxia the levels of ethane generation increased, resulting in a DR-associated decrease in ethane from 2.60 to 1.90 pmol ethane/ml CO2. These results support the hypothesis that DR reduces the level of oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1999.86.2.617DOI Listing

Publication Analysis

Top Keywords

breath ethane
12
consumption co2
12
co2 production
12
al-fed rats
8
decrease ethane
8
ethane generation
8
pmol ethane/ml
8
ethane/ml co2
8
rats
7
co2
7

Similar Publications

Exhaled breath contains trace levels of volatile organic compounds (VOCs) that can reveal information about metabolic processes or pathogens in the body. These molecules can be used for medical diagnosis, but capturing and accurately measuring them is a significant challenge in chemical separations. A highly selective nanoporous sorbent can be used to capture target molecules from a breath sample and preconcentrate them for use in a detector.

View Article and Find Full Text PDF

Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry.

ACS Sens

December 2024

Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.

Highly sensitive and selective imaging of human-borne volatile organic compounds (VOCs) enables an intuitive understanding of their concentrations and release sites. While multi-VOC imaging methods have the potential to facilitate step-by-step metabolic tracking and improve disease screening accuracy, no such system currently exists. In this study, we achieved simultaneous imaging of ethanol (EtOH) and acetaldehyde (AcH), the starting molecule and an intermediate metabolite of alcohol metabolism, using a multiwavelength VOC imaging system.

View Article and Find Full Text PDF

Gas chromatography-ion mobility spectrometry for the detection of human disease: a review.

Anal Methods

November 2024

Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.

Gas chromatography-ion mobility spectrometry (GC-IMS) is an advanced technique used for detecting trace compounds, due to its non-destructive, straightforward, and rapid analytical capabilities. However, the application of GC-IMS in human disease screening is barely reported. This review summarizes the application and related parameters of GC-IMS in human disease diagnosis.

View Article and Find Full Text PDF

Transgenic expression of human cytochrome P450 2E1 in C. elegans and rat PC-12 cells sensitizes to ethanol-induced locomotor and mitochondrial effects.

Biochem Biophys Res Commun

November 2024

Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA; Dept of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA. Electronic address:

Chronic alcohol (ethanol) use is increasing in the United States and has been linked to numerous health issues in multiple organ systems including neurological dysfunction and diseases. Ethanol toxicity is mainly driven by the metabolite acetaldehyde, which is generated through three pathways: alcohol dehydrogenase (ADH2), catalase (CAT), and cytochrome P450 2E1 (CYP2E1). ADH2, while the main ethanol clearance pathway in the liver, is not expressed in the mammalian brain, resulting in CAT and CYP2E1 driving local metabolism of ethanol in the central nervous system.

View Article and Find Full Text PDF

Objective: To assess volatile organic compounds (VOCs) in breath samples collected non-invasively from preterm and full-term infants.

Methods: This was a pilot study included preterm and full-term infants who were not intubated or suspected or diagnosed with metabolic or gastrointestinal disorders. The samples were analyzed for VOCs using a selected-ion flow-tube mass spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!