The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi.

Proc Natl Acad Sci U S A

Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Institut Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, BP71, 13402 Marseille, Cedex 20, France.

Published: February 1999

Peptide methionine sulfoxide reductase (MsrA), which repairs oxidized proteins, is present in most living organisms, and the cognate structural gene belongs to the so-called minimum gene set [Mushegian, A. R. & Koonin, E. V., (1996) Proc. Natl. Acad. Sci. USA 93, 10268-10273]. In this work, we report that MsrA is required for full virulence of the plant pathogen Erwinia chrysanthemi. The following differences were observed between the wild-type and a MsrA- mutant: (i) the MsrA- mutant was more sensitive to oxidative stress; (ii) the MsrA- mutant was less motile on solid surface; (iii) the MsrA- mutant exhibited reduced virulence on chicory leaves; and (iv) no systemic invasion was observed when the MsrA- mutant was inoculated into whole Saintpaulia ionantha plants. These results suggest that plants respond to virulent pathogens by producing active oxygen species, and that enzymes repairing oxidative damage allow virulent pathogens to survive the host environment, thereby supporting the theory that active oxygen species play a key role in plant defense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15320PMC
http://dx.doi.org/10.1073/pnas.96.3.887DOI Listing

Publication Analysis

Top Keywords

msra- mutant
20
gene set
8
peptide methionine
8
methionine sulfoxide
8
sulfoxide reductase
8
plant pathogen
8
pathogen erwinia
8
erwinia chrysanthemi
8
virulent pathogens
8
active oxygen
8

Similar Publications

Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation.

Cell Rep

November 2023

Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

EGFR mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFR mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP binding in the catalytic domain.

View Article and Find Full Text PDF

Methionine restriction (MR) extends lifespan in various model organisms, and understanding the molecular effectors of MR could expand the repertoire of tools targeting the aging process. Here, we address to what extent the biochemical pathway responsible for redox metabolism of methionine plays in regulating the effects of MR on lifespan and health span. Aerobic organisms have evolved methionine sulfoxide reductases to counter the oxidation of the thioether group contained in the essential amino acid methionine.

View Article and Find Full Text PDF

Methionine sulfoxide reductase A (MsrA) enzymes have recently found applications as nonoxidative biocatalysts in the enantioselective kinetic resolution of racemic sulfoxides. This work describes the identification of selective and robust MsrA biocatalysts able to catalyze the enantioselective reduction of a variety of aromatic and aliphatic chiral sulfoxides at 8-64 mM concentration with high yields and excellent ees (up to 99%). Moreover, with the aim to expand the substrate scope of MsrA biocatalysts, a library of mutant enzymes has been designed via rational mutagenesis utilizing docking, molecular dynamics, and structural nuclear magnetic resonance (NMR) studies.

View Article and Find Full Text PDF

Plasmid-Borne AFM Alleles in Pseudomonas aeruginosa Clinical Isolates from China.

Microbiol Spectr

October 2022

Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China.

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a pathogen of global concern due to the fact that therapeutic drugs are limited. Metallo-β-lactamase (MBL)-producing P. aeruginosa has become a critical part of CRPA.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!