It has been suggested that tachykinin NK1 receptor-mediated neurogenic inflammation, characterized by microvascular leakage, mucus secretion, and infiltration and activation of inflammatory cells in the airways, may be involved in allergic asthma. Therefore, in a guinea pig model of allergic asthma, we investigated the involvement of the NK1 receptor in allergen-induced early (EAR) and late (LAR) asthmatic reactions, airway hyperreactivity (AHR) after these reactions and airway inflammation, using the selective nonpeptide NK1 receptor antagonist SR140333. On two different occasions, separated by 1 wk interval, OA-sensitized guinea pigs inhaled either saline (3 min) or SR140333 (100 nM, 3 min) at 30 min before as well as at 5.5 h after OA provocation (between the EAR and LAR) in a random crossover design. A control group, receiving saline inhalations before and at 5.5 h after the two OA provocations, was included as well. SR140333 had no significant effect on either the EAR or the LAR compared with saline control inhalations. However, the NK1 receptor antagonist significantly reduced the OA-induced AHR to histamine, both after the EAR at 5 h after OA challenge (1.77 +/- 0.13-fold increase in histamine reactivity versus 2.50 +/- 0.25-fold increase in the control animals, p < 0.01) and after the LAR at 23 h after OA challenge (1.15 +/- 0.12-fold increase versus 1.98 +/- 0. 34-fold increase, respectively, p < 0.05). Moreover, bronchoalveolar lavage studies performed at 25 h after the second OA provocation indicated that SR140333 significantly inhibited the allergen-induced infiltration of eosinophils, neutrophils, and lymphocytes in the airways (p < 0.05 for all observations), whereas a tendency to reduced accumulation of ciliated epithelial cells in the airway lumen was observed (p = 0.10). These results indicate that the NK1 receptor is involved in the development of allergen-induced AHR to histamine, and that NK1 receptor-mediated infiltration of inflammatory cells in the airways may contribute to this AHR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/ajrccm.159.2.9804125 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
Background: NK-1 receptor antagonists (NK-1RAs) are proven to be successful in preventing chemotherapy-induced nausea and vomiting (CINV). The safety profile of NK-1RAs has not been systematically analyzed in the real world. This pharmacovigilance study investigated the differences in adverse events (AEs) between NK-1RAs.
View Article and Find Full Text PDFACS Nano
December 2024
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
More than the sparse infiltration in glioblastoma, cytotoxic T lymphocytes (CTLs) also function inefficiently and overexpress the inhibitory markers, especially the identified NK cell receptor (NK1.1). However, most studies solely focus on how to augment tumor-infiltrating CTLs and overlook their killing maintenance.
View Article and Find Full Text PDFNeuropeptides
October 2024
Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
Several data indicate that Substance P (SP) neurokinin type 1 receptor (NK1R) is at the center of the interaction between cancer cells and peripheral sensory neurons. Selecting the appropriate cancer cell line and its susceptibility to being modulated by NK1 antagonists are critical to studying this complex interaction. In the current study, we have focused on this selection by comparing several aspects of the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) with a modified murine cell line (E0771), both expressing luciferase.
View Article and Find Full Text PDFInt J Clin Oncol
November 2024
Department of Early Clinical Development, Kyoto University Graduate School of Medicine, 54 Kawahara‑Cho, Sakyo-ku, Shogoin, Kyoto, 606‑8507, Japan.
J Biol Chem
October 2024
Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Substance P and neurokinin A are closely related neuropeptides belonging to the tachykinin family. Their receptors are neurokinin one receptor (NK1R) and neurokinin two receptor (NK2R), G protein-coupled receptors that transmit G and G-mediated downstream signaling. We investigate the importance of sequence differences at the bottom of the receptor orthosteric site for activity and selectivity, focusing on residues that closely interact with the C-terminal methionine of the peptide ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!