Fibroblast growth factor receptor expression in outer hair cells of rat cochlea.

Neuroreport

INSERM U254, CHU Hopital St-Charles, Montpellier, France.

Published: December 1998

Fibroblast growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, which may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199812210-00016DOI Listing

Publication Analysis

Top Keywords

hair cells
16
fibroblast growth
12
outer hair
12
growth factors
8
growth factor
4
factor receptor
4
receptor expression
4
expression outer
4
hair
4
cells
4

Similar Publications

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Unveiling the Effect of Age and IgE Level on Alopecia Areata: Insights from Comparative RNAseq Analysis.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China.

Background: Alopecia areata (AA) is a common autoimmune disease, causes sudden hair loss on the scalp, face, and sometimes other areas of the body. Previous studies have suggested more severe manifestations and higher recurrence rates in children than in adults. Moreover, pediatric AA patients with atopic predisposition often exhibit elevated IgE levels, early onset, and a poor prognosis.

View Article and Find Full Text PDF

Spider Fungi: New species of and in the aerial rhizomorph web-maker guild in Amazonia.

Fungal Syst Evol

December 2024

Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.

Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .

View Article and Find Full Text PDF

Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.

Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.

View Article and Find Full Text PDF

Unlabelled: Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!