This study was undertaken to examine the combined effect of nitric oxide (NO) and hyperoxia on lung edema and Na,K-ATPase expression. Newborn piglets were exposed to room air (FiO2 = 0.21), room air plus 50 ppm NO, hyperoxia (FiO2 >/= 0.96) or to hyperoxia plus 50 ppm NO for 4-5 days. Animals exposed to NO in room air experienced only a slight decrease in Na,K-ATPase alpha subunit protein level. Hyperoxia, in the absence of NO, induced both the mRNA and the protein level of Na,K-ATP-ase alpha subunit and significantly increased wet lung weight, extravascular lung water, and alveolar permeability. NO in hyperoxia decreased the hyperoxic-mediated induction of Na,K-ATPase alpha subunit mRNA and protein while wet lung weight, extravascular lung water, and alveolar permeability remained elevated. These results suggest that 50 ppm of inhaled NO may not improve hyperoxic-induced lung injury and may interfere with the expression of Na,K-ATPase which constitutes a part of the cellular defense mechanism against oxygen toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000014096 | DOI Listing |
Pulmonology
December 2025
Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei tintori, Monza, Italy.
Background: Non-invasive helmet respiratory support is suitable for several clinical conditions. Continuous-flow helmet CPAP systems equipped with HEPA filters have become popular during the recent Coronavirus pandemic. However, HEPA filters generate an overpressure above the set PEEP.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFKaku Igaku
January 2025
Department of Radiology, Kindai University Faculty of Medicine.
Objective: [Cu]Cu-ATSM is a radiotherapeutics under clinical trials. It is necessary to take appropriate measures to limit its exposure and ensures its airborne concentrations do not exceed legally permitted levels. Therefore, the purpose of this study was to measure the airborne radioactivity concentration in the inpatient room after administering [Cu]Cu-ATSM to patients.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!