Ischemic preconditioning (IPC) in the heart may reduce myocardial energy demand. The present study was undertaken to examine changes in myocardial oxygen consumption (MVO2) during ischemia by IPC in Langendorff perfused rat hearts. We assessed MVO2 during ischemia from the measurement of mitochondrial cyt. aa3 redox state by a two-wavelength reflectance spectrophotometry where T(1/2), the time from the onset of ischemia to the point for half reduction of cyt. aa3, was assumed to represent MVO2. The heart was preconditioned by three cycles of 5 min ischemia plus 5 min reperfusion and then subjected to 30 min global ischemia followed by reperfusion for 30 min. The T(1/2) was significantly longer in the preconditioned heart (30 +/- 6 s, n = 10) than the control heart (14 +/- 5 s, n = 9, P<0.001), indicating a reduction of MVO2 during ischemic period by IPC. The prolongation of T(1/2) was evident after only one IPC episode. When the heart was perfused with high K+ solution to abolish MVO2 for contractions, we still found the prolongation of T1(1/2) in the preconditioned heart (116 +/- 12 s, n = 6) compared to the control heart (86 +/- 10 s, n = 6, P<0.01), suggesting that decrease in contractile activity may be, in part but not completely, responsible for the reduction of MVO2. In contrast, the prolongation of T(1/2) was completely abolished by administration of a NO synthase inhibitor N omega-nitro-L-arginine in the high K+ arrested heart, demonstrating involvement of NO in the reduction of MVO2, presumably by suppression of mitochondrial respiratory chain. In conclusion, IPC reduces MVO2 during ischemia. The reduction of MVO2 in the preconditioned heart may be accounted for by decreased contractile activity and by depression of respiratory chain by NO.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmcc.1998.0771DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
8
myocardial oxygen
8
oxygen consumption
8
mvo2 ischemia
8
cyt aa3
8
heart +/-
8
ischemia
6
preconditioning myocardial
4
consumption ischemia
4
ischemia ischemic
4

Similar Publications

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Ischemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.

View Article and Find Full Text PDF

Hyperbaric oxygen therapy for cardiovascular surgery.

Med Gas Res

June 2025

Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Common cardiovascular surgeries include coronary artery bypass grafting, cardiac valve replacement, radiofrequency ablation, and cardiac intervention surgery. Multiple postoperative complications, such as hypoxic encephalopathy, air embolism, retained intracardiac air, cognitive dysfunction and major adverse cardiovascular events, including heart failure, ischemic stroke, and myocardial infarction, may occur after these cardiovascular surgeries. Hyperbaric oxygen can be used in preconditioning to lower the morbidity of adverse complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!