Background: The coagulation process in hyperacute and delayed xenograft rejection is essential and depends upon platelet adhesion and aggregation. The initial binding of platelets to the damaged endothelium is due to the interaction of the platelet receptor glycoprotein Ib with von Willebrand factor (vWF), which is present on activated endothelial cells and bound to the subendothelial matrix. We hypothesized that the use of organs from animals with homozygous von Willebrand disease (vWD), severely deficient in vWF, might prevent the thrombosis encountered in delayed xenograft rejection.
Methods: Ten baboons were treated by extracorporeal immunoadsorption of xenoreactive natural antibodies (XNA) through the donor pig liver to inhibit hyperacute rejection and received heterotopic vWD or control pig kidney xenografts. XNA levels, coagulation, and platelet activation markers were studied, and specimens of rejected kidneys were analyzed histologically.
Results: Although XNA depletion was comparable in both groups, neither kidney function nor survival times of control (n=5) or vWD (n=5) porcine kidneys showed any difference. Platelet and coagulation activation was evidenced in both groups after surgery and at rejection time. Immunohistochemical analysis revealed a weak endothelial vWF immunostaining in the rejected vWD kidneys, whereas it was undetectable in the nongrafted vWD kidneys, suggesting the deposition of baboon plasma vWF on the porcine vessels.
Conclusions: The use of vWD organs did not improve the survival time of grafted kidneys in this xenotransplantation model. Further studies on the use of vWD organs, in association with other therapeutic approaches, such as complement inhibition, are nevertheless necessary to evaluate the usefulness of vWF deficiency as an adjunctive therapy to decrease the coagulation process during xenograft rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00007890-199901150-00006 | DOI Listing |
Virchows Arch
December 2021
Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin.
View Article and Find Full Text PDFAm J Med Genet A
June 2021
The Folkhaelsan Department of Medical Genetics, The Folkhaelsan Institute of Genetics and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
J Transl Med
October 2020
Institute of Neurophysiology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany.
J Eur Acad Dermatol Venereol
February 2019
Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital, Helsinki, Finland.
Transplantation
January 2016
1 Transplantation Laboratory, University of Helsinki, Helsinki, Finland. 2 Department of surgery, Oulu University Central Hospital, Oulu, Finland. 3 Transplantation and Liver Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland. 4 Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!