S-adenosyl-L-homocysteine hydrolase regulates aldosterone-induced Na+ transport.

J Biol Chem

Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Published: February 1999

Aldosterone-induced Na+ reabsorption, in part, is regulated by a critical methyl esterification; however, the signal transduction pathway regulating this methylation remains unclear. The A6 cell line was used as a model epithelia to investigate regulation of aldosterone-induced Na+ transport by S-adenosyl-L-homocysteine hydrolase (SAHHase), the only enzyme in vertebrates known to catabolize S-adenosyl-L-homocysteine (SAH), an end product inhibitor of methyl esterification. Sodium reabsorption was decreased within 2 h by 3-deazaadenosine, a competitive inhibitor of SAHHase, with a half inhibitory concentration between 40 and 50 microM. Aldosterone increased SAH catabolism by activating SAHHase. Increased SAH catabolism was associated with a concomitant increase in S-adenosylmethionine catabolism. Moreover, SAH decreased substrate methylation. Antisense oligonucleotide complementary to SAHHase mRNA decreased SAHHase activity and Na+ current by approximately 50%. Overexpression of SAHHase increased SAHHase activity and dependent substrate methyl esterification. Whereas basal Na+ current was not affected by overexpression of SAHHase, aldosterone-induced current in SAHHase-overexpressing cells was significantly potentiated. These results demonstrate that aldosterone induction of SAHHase activity is necessary for a concomitant relief of the methylation reaction from end product inhibition by SAH and the subsequent increase in Na+ reabsorption. Thus, regulation of SAHHase activity is a control point for aldosterone signal transduction, but SAHHase is not an aldosterone-induced protein.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.6.3842DOI Listing

Publication Analysis

Top Keywords

sahhase activity
16
aldosterone-induced na+
12
methyl esterification
12
sahhase
11
s-adenosyl-l-homocysteine hydrolase
8
na+ transport
8
na+ reabsorption
8
signal transduction
8
increased sah
8
sah catabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!