A human tyrosine hydroxylase isoform associated with progressive supranuclear palsy shows altered enzymatic activity.

J Biol Chem

Laboratoire de Génétique Moleculaire de la Neurotransmission et des Processus Neurodigènératifs, CNRS UMR 9923, 75013 Paris, France.

Published: February 1999

A novel human tyrosine hydroxylase (HTH) messenger RNA subgroup generated by alternative splicing and characterized by the absence of the third exon was recently identified. The corresponding putative protein lacks 74 amino acids including Ser31 and Ser40, two major phosphorylation sites implicated in the regulation of HTH activity. These mRNA species are detected in adrenal medulla and are overexpressed in patients suffering from progressive supranuclear palsy, a neurodegenerative disease mostly affecting catecholaminergic neurons of the basal ganglia. In the present work, an HTH protein isoform lacking exon 3 was identified in human adrenal medulla. For this purpose, an antibody was raised against the HTH exon 3. The effect of the removal of exon 3 on the enzymatic activity of HTH was studied in vitro by comparing a purified recombinant fusion protein without exon 3 (glutathione S-transferase (GST)-HTHDelta3) to the equivalent protein containing exon 3 (GST-HTH3). In initial velocity conditions, GST-HTHDelta3 has 30% of the maximal velocity of GST-HTH3. Moreover, the skipping of exon 3 results in the absence of activation of GST-HTH by heparin and increases by 10-fold the retroinhibition constant for dopamine, demonstrating the involvement of exon 3 in the regulation of HTH enzymatic activity. The identification of a variably expressed HTH isoform that lacks an exon implicated in activity regulation supports the view that HTH alternative splicing contributes to the functional diversity within the catecholaminergic system and may be implicated in some neurological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.6.3469DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
12
exon
9
human tyrosine
8
tyrosine hydroxylase
8
progressive supranuclear
8
supranuclear palsy
8
hth
8
alternative splicing
8
exon identified
8
regulation hth
8

Similar Publications

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

METTL3 is the RNA methyltransferase predominantly responsible for the addition of N-methyladenosine (mA), the most abundant modification to mRNA. The prevalence of mA and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of as an proof-of-concept compound.

View Article and Find Full Text PDF

Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in .

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Spore germination in is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species.

View Article and Find Full Text PDF

Oxygen Activation Biocatalytic Precipitation Strategy Based on a Bimetallic Single-Atom Catalyst for Photoelectrochemical Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Article Synopsis
  • The traditional biocatalytic precipitation (BCP) method has limitations due to HO's tendency to self-decompose, affecting its effectiveness in quantitative analysis.
  • Researchers discovered that a bimetallic single-atom catalyst (Co/Zn-N-C SAC) can activate dissolved oxygen to create reactive oxygen species, leading to improved detection methods.
  • The development of a new oxygen-activated photoelectrochemical (PEC) biosensor for chloramphenicol (CAP) detection demonstrates enhanced stability and accuracy by using Co/Zn-N-C SAC and cesium platinum bromide nanocrystals (CsPtBr NCs) without needing external reactants.
View Article and Find Full Text PDF

Highly Efficient Biosynthesis of Rebaudioside M9 through Enzyme Screening and Structure-Guided Engineering.

J Agric Food Chem

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.

Steviol glycosides (SGs) are highly valued for their sweetness, safety, and zero calories, but their bitter taste and low solubility limit their application. Modifying glycosyl units is a promising strategy to improve sensory qualities. In this study, we identified the enzyme UGT94E13 through phylogenetic analysis and enzyme screening, which catalyzes the glycosylation of rebaudioside M2 (Reb M2) at the C-13 position, producing the novel β-1,6--glycosylated product rebaudioside M9 (Reb M9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!