The ionotropic glutamate receptor GluR6 exhibits strongly and rapidly desensitizing current responses. Treatment of heterologically expressed GluR6 with the lectin concanavalin A (ConA) in Xenopus oocytes as well as in human embryonic kidney-293 cells results in a considerable increase of the steady-state current, presumably by inhibiting receptor desensitization. In the present study, we investigated the molecular basis of this effect using a systematic mutagenesis approach. We found that although N-glycosylation is an absolute prerequisite for the lectin-mediated inhibition of desensitization, no single one of the nine extracellular consensus sites for N-glycosylation of GluR6 is required. Rather, each of the nine N-linked carbohydrate side chains is independently capable of modulatory interaction with the lectin. Moreover, even artificially introduced N-glycosylation sites can substitute for native sites. Thus, the specific site of the lectin binding does not appear to be important for its desensitization-inhibiting action. Furthermore, we show that the extent of the receptor's ConA sensitivity depends on its state of activation, because the desensitized GluR6 exhibits significantly lower lectin sensitivity than the nondesensitized receptor. We conclude that binding of ConA "locks" the receptor in the activatable state, thereby inhibiting conformational changes required to shift the receptor to the desensitized state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782145 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.19-03-00916.1999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!