Four members of the annexin family, herein referred to as max (for medaka annexin) 1-4, have recently been identified through hybridization cloning in the killifish Oryzias latipes (D. Osterloh, J. Wittbrodt and V. Gerke, Characterization and developmentally regulated expression of four annexins in the killifish medaka. DNA and Cell Biol., in press). These annexins which are expressed in a developmentally regulated manner are present as a maternal pool in unfertilized eggs of another fish species, Misgurnus fossilis, and it has been proposed that they play a role in the Ca2+-regulated exocytosis of cortical granules occurring after fertilization. To characterize biochemical properties of the medaka proteins possibly relevant to their function in early development, we analyzed the ability of recombinantly expressed max 1-4 to interact with the principal structures of the egg cortex, phospholipid membranes and actin filaments. We show that all medaka annexins bind to acidic phospholipids in a Ca2+-regulated manner, although exhibiting different Ca2+ sensitivities. All medaka annexins, but max 1, are also capable of inducing, in a Ca2+-dependent manner, phospholipid vesicle aggregation, albeit only max 3 displays this activity at Ca2+ concentrations met in stimulated (i.e. fertilized) eggs. Max 3 is also the only medaka annexin able to interact with F-actin in the presence of Ca2+. These data identify by biochemical criteria max 3 as a close relative of the mammalian annexins I and II, thus supporting previous sequence-based comparisons. Max 3 is therefore the prime annexin candidate for being involved in cortical granule exocytosis, possibly by providing granule granule, granule plasma membrane and/or granule cytoskeleton contacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4889(98)00131-1DOI Listing

Publication Analysis

Top Keywords

phospholipid vesicle
8
max medaka
8
medaka annexin
8
developmentally regulated
8
medaka annexins
8
granule granule
8
max
7
annexins
6
medaka
6
granule
5

Similar Publications

Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.

View Article and Find Full Text PDF

Electrophysiological Characterization of Monoolein-Fatty Acid Bilayers.

Langmuir

January 2025

Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States.

Understanding the evolution of protocells, primitive compartments that distinguish self from nonself, is crucial for exploring the origin of life. Fatty acids and monoglycerides have been proposed as key components of protocell membranes due to their ability to self-assemble into bilayers and vesicles capable of nutrient exchange. In this study, we investigate the electrophysiological properties of planar bilayers composed of monoglyceride and fatty acid mixtures, using a droplet interface bilayer system.

View Article and Find Full Text PDF

Comparative Structural and Biophysical Investigation of Toxin I (LyeTx I) and Its Analog LyeTx I-b.

Antibiotics (Basel)

January 2025

Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil.

This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider , and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. : To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with H-Ala and N-Leu to facilitate structural studies via NMR spectroscopy.

View Article and Find Full Text PDF

The Effect of Lipopolysaccharides from on the Size, Density, and Compressibility of Phospholipid Vesicles.

Biomimetics (Basel)

January 2025

Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia.

The properties of the large unilamellar vesicles (LUVs) from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), modified by lipopolysaccharides (LPS) from sv. Enteritidis, which mimics Gram-negative bacteria, were studied by various physical methods. LPS, in the range of 0/20/50 % / relative to the lipid, had a regulatory role in the structure of the LUVs toward the lower size, low polydispersity, and over-a-month size stability due to the lower negative zeta potential.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!