Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism.

Biochem Pharmacol

Laboratoire de Physicochimie et Pharmacologie des Macromolecules Biologiques, UMR 1772 CNRS, Institut Gustave Roussy, Villejuif, France.

Published: January 1999

Bleomycin (BLM) does not diffuse through the plasma membrane but nevertheless displays cytotoxic activity due to DNA break generation. The aim of the study was to describe the mechanism of BLM internalisation. We previously provided evidence for the existence of BLM-binding sites at the surface of DC-3F Chinese hamster fibroblasts, as well as of their involvement in BLM cytotoxicity on DC-3F cells and related BLM-resistant sublines. Here we report that A253 human cells and their BLM-resistant subline C-10E also possessed a membrane protein of ca. 250 kDa specifically binding BLM. Part of this C-10E cell resistance could be explained by a decrease in the number of BLM-binding sites exposed at the cell surface with respect to A253 cells. The comparison between A253 and DC-3F cells exposing a similar number of BLM-binding sites revealed that the faster the fluid phase endocytosis, the greater the cell sensitivity to BLM. Moreover, the experimental modification of endocytotic vesicle size showed that BLM cytotoxicity was directly correlated with the flux of plasma membrane area engulfed during endocytosis rather than with the fluid phase volume incorporated. Thus, BLM would be internalised by a receptor-mediated endocytosis mechanism which would first require BLM binding to its membrane receptor and then the transfer of the complex into intracellular endocytotic vesicles, followed by BLM entry into the cytosol, probably from a nonacidic compartment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(98)00282-2DOI Listing

Publication Analysis

Top Keywords

blm-binding sites
12
blm
9
receptor-mediated endocytosis
8
endocytosis mechanism
8
plasma membrane
8
blm cytotoxicity
8
dc-3f cells
8
cells blm-resistant
8
number blm-binding
8
fluid phase
8

Similar Publications

The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen.

View Article and Find Full Text PDF

A short DNA sequence confers strong bleomycin binding to hairpin DNAs.

J Am Chem Soc

October 2014

Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.

Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM-DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5'-ACGC (complementary strand sequence 5'-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library.

View Article and Find Full Text PDF

Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO-dependent DNA damage response (UbS-DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N-terminal region of BLM and subsequent BLM binding to the ubiquitin-interacting motifs of RAP80.

View Article and Find Full Text PDF

Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases.

View Article and Find Full Text PDF

Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism.

Biochem Pharmacol

January 1999

Laboratoire de Physicochimie et Pharmacologie des Macromolecules Biologiques, UMR 1772 CNRS, Institut Gustave Roussy, Villejuif, France.

Bleomycin (BLM) does not diffuse through the plasma membrane but nevertheless displays cytotoxic activity due to DNA break generation. The aim of the study was to describe the mechanism of BLM internalisation. We previously provided evidence for the existence of BLM-binding sites at the surface of DC-3F Chinese hamster fibroblasts, as well as of their involvement in BLM cytotoxicity on DC-3F cells and related BLM-resistant sublines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!