Objective: To evaluate whether the pathologic changes observed by light microscopy in endometrium of categories II and III were reflected by cellular changes and to describe differences in the endometrial cell ultrastructure during estrus and diestrus.
Animals: 18 healthy mares.
Procedure: Endometrial tissues biopsied during the physiologic breeding season were categorized, using light microscopy, and were studied, using transmission electron microscopy (TEM).
Results: Using TEM, glycogen granules were associated with giant mitochondria for all endometrial types during diestrus. Development of rough endoplasmic reticulum (RER) and Golgi apparatus suggested protein synthesis in the endometrial glands during diestrus. TEM did not reveal major ultrastructural differences, between endometrium of categories I and II. This was unlike differences identified by light microscopy. The most extensive pathologic changes were seen in category-III tissue (TEM and light microscopy). Category-III endometria had a large number of light cells with more degenerative structures and fewer organelles, and lacked cilia in the lumen of the glands. This tissue had extensive fibrotic tissue in the lamina propria and many inflammatory cells in most tissue layers.
Conclusions: The severe ultrastructural changes may be one of the many factors decreasing the fertility of mares with category-III, compared with category-1 and -2, endometrium.
Download full-text PDF |
Source |
---|
BMC Cancer
January 2025
Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis.
Methods: A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital.
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375, Wroclaw, Poland.
The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!