Rostral hypothalamic neurons are influenced by endogenous factors that affect thermoregulation and fever. Intracellular recordings reveal the synaptic and intrinsic mechanisms responsible for neuronal thermosensitivity. Many temperature-sensitive and temperature-insensitive neurons display a depolarizing prepotential that precedes action potentials. Temperature has little effect on the prepotential of insensitive neurons; however, in warm-sensitive neurons, the prepotential's depolarization is elevated by warming, and this increases the firing rate. Intracellular cAMP can increase neuronal thermosensitivity by enhancing the thermal response of the prepotential, most likely by thermosensitive ionic conductances. Warm-sensitive neurons also receive inhibitory synaptic input (IPSPs) from temperature-insensitive neurons, enhancing the thermosensitivity of some neurons, because cooling increases IPSP amplitude and duration. Therefore, even though IPSP frequencies do not change, cooling can decrease firing rates by increasing IPSP amplitudes. Because endogenous factors change neuronal firing rate and thermosensitivity, these changes likely occur both post- and presynaptically as well as by ionic conductances that determine the time interval between action potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.1998.tb08319.x | DOI Listing |
Cell Tissue Res
January 2025
Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.
Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a "marvellous region", as Wolfgang Bargmann (1975) called it.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans.
View Article and Find Full Text PDFSci Transl Med
January 2025
University of Strasbourg, INSERM, Strasbourg Translational Neuroscience & Psychiatry STEP-CRBS, UMR-S 1329, 67000 Strasbourg, France.
Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!