Mouse spermatozoa in high concentrations of glycerol: chemical toxicity vs osmotic shock at normal and reduced oxygen concentrations.

Cryobiology

Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Published: December 1998

The cryobiological preservation of mouse spermatozoa has presented difficulties in the form of poor motilities or irreproducibility. We have identified several likely underlying problems. One is that published studies have used concentrations of the cryoprotectant glycerol that are substantially lower (0.3 M) than the approximately 1 M concentrations that are optimal for most cells. Another may arise from the known high susceptibility of mouse sperm to free radical damage. We have identified two contributors to damage from higher concentrations of glycerol, namely, chemical toxicity proportional to concentration and exposure time and osmotic damage arising from too rapid an addition and removal of the glycerol. When toxicity is minimized by restricting the exposure time to 1 or 5 min and osmotic shock is minimized by adding and removing the glycerol stepwise, relatively high percentages of the sperm survive contact with 0.8 M glycerol. Free-radical damage in mouse sperm is known to be proportional to the oxygen concentration. We have determined the consequences of reducing the oxygen to <3% of atmospheric by the use of a bacterial membrane preparation, Oxyrase. Oxyrase reduced damage from centrifugation and substantially reduced damage from osmotic shock; however, it did not significantly reduce glycerol toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cryo.1998.2128DOI Listing

Publication Analysis

Top Keywords

mouse spermatozoa
8
concentrations glycerol
8
glycerol chemical
8
chemical toxicity
8
osmotic shock
8
mouse sperm
8
exposure time
8
glycerol
6
concentrations
5
mouse
4

Similar Publications

Objectives: Acetylated tubulin is a hallmark of flagellar stability in spermatozoa, and studies have demonstrated the ability of CDYL to function as a tubulin acetyltransferase in spermatozoa. Of note, germline conditional knockout of Cdyl can lead to asthenoteratozoospermia and infertility in male mice. However, the role of CDYL gene in human fertility remains uncharacterized.

View Article and Find Full Text PDF

Background: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited.

View Article and Find Full Text PDF

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Role of PI3K/AKT signaling pathway during capacitation.

Theriogenology

January 2025

Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:

Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!