Bombesin promotes synergistic stimulation of DNA synthesis by ethanol and insulin in fibroblasts.

Arch Biochem Biophys

The Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, USA.

Published: February 1999

In NIH 3T3 fibroblasts and several other cellular systems, ethanol (50-80 mM) was previously shown to greatly enhance the mitogenic effects of insulin particularly in the presence of zinc. Here we report that in NIH 3T3 fibroblasts the combined stimulatory effects of ethanol and insulin on DNA synthesis can be further increased by bombesin both in the absence and presence of zinc. Bombesin also enhanced insulin-plus-ethanol-induced DNA synthesis in mouse Swiss 3T3 and Balb/c 3T3 fibroblasts, but in these cells bombesin was effective only in the presence of zinc. In NIH 3T3 fibroblasts, the potentiating effects of ethanol on insulin-induced DNA synthesis by the zinc-dependent and bombesin-dependent mechanisms were additive. Wortmannin, an inhibitor of phosphatidylinositol 3'-kinase (PI3K), prevented the comitogenic effect of ethanol in the presence of bombesin but not in the presence of zinc. Furthermore, bombesin, but not ethanol, was found to enhance the stimulatory effect of insulin on PI3K activity. Rapamycin, an indirect inhibitor of p70 S6 kinase actions, inhibited the comitogenic effects of ethanol in the presence of both zinc and bombesin. However, only ethanol, but not bombesin, enhanced the stimulatory effect of insulin on p70 S6 kinase activity; this effect of ethanol was zinc-dependent. Neither ethanol nor bombesin enhanced the stimulatory effects of insulin on the phosphorylation (activation) of p38/p42/p44 mitogen-activated protein kinases. The results suggest that in mouse fibroblasts maximal stimulation of DNA synthesis by physiologically relevant concentrations of ethanol occurs if both PI3K and p70 S6 kinase are activated. These data suggest a mechanism by which ethanol may affect growth in affected human tissues during its tumor promoting actions.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abbi.1998.1027DOI Listing

Publication Analysis

Top Keywords

dna synthesis
20
presence zinc
20
3t3 fibroblasts
16
ethanol
12
nih 3t3
12
effects ethanol
12
zinc bombesin
12
bombesin enhanced
12
p70 kinase
12
bombesin
9

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Virtual screening of potential inhibitors of the ATPase site in Acinetobacter baumannii DNA Gyrase.

Comput Biol Med

January 2025

Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:

Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!