Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging.

Ann Biomed Eng

Department of Mechanical and Industrial Engineering and Institute for Biomedical Engineering, University of Toronto, Ontario, Canada.

Published: April 1999

Purpose: Combining computational blood flow modeling with three-dimensional medical imaging provides a new approach for studying links between hemodynamic factors and arterial disease. Although this provides patient-specific hemodynamic information, it is subject to several potential errors. This study quantifies some of these errors and identifies optimal reconstruction methodologies.

Methods: A carotid artery bifurcation phantom of known geometry was imaged using a commercial magnetic resonance (MR) imager. Three-dimensional models were reconstructed from the images using several reconstruction techniques, and steady and unsteady blood flow simulations were performed. The carotid bifurcation from a healthy, human volunteer was then imaged in vivo, and geometric models were reconstructed.

Results: Reconstructed models of the phantom showed good agreement with the gold standard geometry, with a mean error of approximately 15% between the computed wall shear stress fields. Reconstructed models of the in vivo carotid bifurcation were unacceptably noisy, unless lumenal profile smoothing and approximating surface splines were used.

Conclusions: All reconstruction methods gave acceptable results for the phantom model, but in vivo models appear to require smoothing. If proper attention is paid to smoothing and geometric fidelity issues, models reconstructed from MR images appear to be suitable for use in computational studies of in vivo hemodynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1114/1.163DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
blood flow
8
models reconstructed
8
reconstructed images
8
carotid bifurcation
8
reconstructed models
8
models
6
reconstructed
5
accuracy computational
4
computational hemodynamics
4

Similar Publications

Background: Axial spondyloarthritis (SpA) leads to structural bone lesions in every part of the vertebral column. These lesions are only partially visualized on conventional radiographs, omitting posterior parts of the vertebral column and the thoracic spine, that may nevertheless contribute to impaired spinal mobility and function in patients with axial SpA.

Methods: In this prospective and blinded investigation, we assessed the distribution of structural spinal lesions using magnetic resonance imaging (MRI) of the whole spine in 55 patients with axial SpA classified according to the Assessment in Spondyloarthritis International Society (ASAS) criteria.

View Article and Find Full Text PDF

Background: To investigate the alterations in spontaneous brain activity and the similarities and differences between monocular deprivation amblyopia and binocular deprivation amblyopia.

Methods: Twenty children with binocular deprivation amblyopia, 26 children with monocular deprivation amblyopia and 20 healthy controls underwent resting-state functional magnetic resonance imaging. The evaluation of altered spontaneous brain activity was conducted using fractional amplitude of low-frequency fluctuations (fALFF).

View Article and Find Full Text PDF

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

Nonacademic predictors of China medical licensing examination.

BMC Med Educ

January 2025

Department of Radiology and Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.

Background: National Medical Licensing Examination (NMLE) is the entrance exam for medical practice in China, and its general medical knowledge test (GMKT) evaluates abilities of medical students to comprehensively apply medical knowledge to clinical practice. This study aimed to identify nonacademic predictors of GMKT performance, which would benefit medical schools in designing appropriate strategies and techniques to facilitate the transition from medical students to qualified medical practitioners.

Methods: In 1202 medical students, we conducted the deletion-substitution-addition (DSA) and structural equation model (SEM) analyses to identify nonacademic predictors of GMKT performance from 98 candidate variables including early life events, physical conditions, psychological and personality assessments, cognitive abilities, and socioeconomic conditions.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the prognostic significance of magnetic resonance imaging (MRI) parameters on biochemical failure-free survival (BFS) in patients diagnosed with intermediate-risk prostate cancer and treated with robotic ultrahypofractionated stereotactic body radiotherapy (SBRT) without androgen deprivation therapy (ADT).

Methods: A retrospective analysis was conducted in patients with intermediate-risk prostate cancer undergoing robotic SBRT delivered in five fractions with a total radiation dose of 35-36.25 Gy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!