beta3 integrins have been implicated in a wide variety of functions, including platelet aggregation and thrombosis (alphaIIbbeta3) and implantation, placentation, angiogenesis, bone remodeling, and tumor progression (alphavbeta3). The human bleeding disorder Glanzmann thrombasthenia (GT) can result from defects in the genes for either the alphaIIb or the beta3 subunit. In order to develop a mouse model of this disease and to further studies of hemostasis, thrombosis, and other suggested roles of beta3 integrins, we have generated a strain of beta3-null mice. The mice are viable and fertile, and show all the cardinal features of GT (defects in platelet aggregation and clot retraction, prolonged bleeding times, and cutaneous and gastrointestinal bleeding). Implantation appears to be unaffected, but placental defects do occur and lead to fetal mortality. Postnatal hemorrhage leads to anemia and reduced survival. These mice will allow analyses of the other suggested functions of beta3 integrins and we report that postnatal neovascularization of the retina appears to be beta3-integrin-independent, contrary to expectations from inhibition experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC407888PMC
http://dx.doi.org/10.1172/JCI5487DOI Listing

Publication Analysis

Top Keywords

beta3 integrins
12
glanzmann thrombasthenia
8
placental defects
8
reduced survival
8
platelet aggregation
8
beta3-integrin-deficient mice
4
mice model
4
model glanzmann
4
thrombasthenia showing
4
showing placental
4

Similar Publications

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

[Analysis of Genes Related to Platelet Activation in Essential Thrombocythemia Based on Transcriptomics].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.

Objective: To analyze the genes related to platelet activation in essential thrombocythemia (ET) based on transcriptome sequencing technology (RNA-seq), and to explore the potential targets related to ET thrombosis.

Methods: Blood samples from ET patients and healthy individuals were collected for RNA-seq, and differentially expressed lncRNAs, miRNAs, and mRNAs were selected to construct a lncRNA-miRNA-mRNA regulatory network. Differential mRNAs in the regulatory network were enriched and analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).

View Article and Find Full Text PDF

Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.

View Article and Find Full Text PDF

ITGB3 is reduced in pregnancies with preeclampsia and its influence on biological behavior of trophoblast cells.

Mol Med

December 2024

Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.

Background: Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE.

View Article and Find Full Text PDF

The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!