Bacterial alpha-amylase was shown by equilibrium and velocity-sedimentation studies to be a monomer-dimer equilibrium system in 0.10M-NaCl/0.015M-calcium acetate/0.010M-EDTA, pH7.0; an association constant of 2.4 X 10(3)M-1 is obtained. Studies of the binding of Zn2+ to alpha-amylase in 0.10M-NaCl/0.005M-calcium acetate, pH7.0, yielded binding curves that exhibit dependence on the concentration of alpha-amylase (Zn2+-free) used in the equilibrium-dialysis experiments. Results are described very satisfactorily by a reaction scheme in which Zn2+ binds exclusively to the dimer of the above monomer--dimer system with an association constant of 1.0 X 10(6)M-1. The present results refute the earlier scheme for dimer stabilization by Zn2+ in which the metal ion formed a cross-link between two non polymerizing monomer units.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1185761PMC
http://dx.doi.org/10.1042/bj1730185DOI Listing

Publication Analysis

Top Keywords

bacterial alpha-amylase
8
association constant
8
role zinc
4
zinc stabilization
4
stabilization dimeric
4
dimeric form
4
form bacterial
4
alpha-amylase
4
alpha-amylase bacterial
4
alpha-amylase equilibrium
4

Similar Publications

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Background And Objectives: The study focused on the amylase enzyme, widely used in the industrial starch liquefaction process. We looked into the best way to immobilize the native strain , which is the only alpha-amylase-producing bacterium, by trapping it in calcium alginate gel. This is a promising way to increase enzyme output.

View Article and Find Full Text PDF

Cerium oxide NPs (-CeO), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated -CeO (Cu@-CeO) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@-CeO nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study.

View Article and Find Full Text PDF

The rapid growth of nanotechnology has opened new frontiers in biomedical applications, particularly through the use of metal nanoparticles. This study explores the green synthesis of copper nanoparticles (CuNPs) using an aqueous extract of Pleurotus ostreatus (PO-CuNPs), and their characterization through UV-visible spectroscopy, FTIR, SEM, and EDAX. The synthesized PO-CuNPs demonstrated exceptional antioxidant activity, evident in hydrogen peroxide scavenging and phosphomolybdenum assays.

View Article and Find Full Text PDF

Microbial enzymes as powerful natural anti-biofilm candidates.

Microb Cell Fact

December 2024

Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!