Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.54.649 | DOI Listing |
Nat Commun
November 2024
Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France.
The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.
View Article and Find Full Text PDFCryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems.
View Article and Find Full Text PDFSci Adv
November 2024
DPHY, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France.
Accurate and stable measurement of inertial quantities is essential in geophysics, geodesy, fundamental physics, and inertial navigation. Here, we present an architecture for a compact cold-atom accelerometer-gyroscope based on a magnetically launched atom interferometer. Characterizing the launching technique, we demonstrate 700-parts per million gyroscope scale factor stability over 1 day, while acceleration and rotation rate bias stabilities of 7 × 10 meters per second squared and 4 × 10 radians per second are reached after 2 days of integration of the cold-atom sensor.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Physics and Astronomy, Institute of Optics, Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY, 14627, USA.
Deployment of ultracold atom interferometers (AI) into space will capitalize on quantum advantages and the extended freefall of persistent microgravity to provide high-precision measurement capabilities for gravitational, Earth, and planetary sciences, and to enable searches for subtle forces signifying physics beyond General Relativity and the Standard Model. NASA's Cold Atom Lab (CAL) operates onboard the International Space Station as a multi-user facility for fundamental studies of ultracold atoms and to mature space-based quantum technologies. We report on pathfinding experiments utilizing ultracold Rb atoms in the CAL AI.
View Article and Find Full Text PDFSci Adv
July 2024
Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87123, USA.
The laser system is the most complex component of a light-pulse atom interferometer (LPAI), controlling frequencies and intensities of multiple laser beams to configure quantum gravity and inertial sensors. Its main functions include cold-atom generation, state preparation, state-selective detection, and generating a coherent two-photon process for the light-pulse sequence. To achieve substantial miniaturization and ruggedization, we integrate key laser system functions onto a photonic integrated circuit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!