Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.52.3521 | DOI Listing |
Nanoscale Horiz
January 2025
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2024
Department of Physics and Astronomy, University College London, London, WC1E 6BT UK.
All-dielectric metasurface (ADM) absorbers driven by quasi-bound states in the continuum (BIC) are critical for high-performance optoelectronic devices due to their ability to offer high -factor absorption. However, these all-dielectric metasurfaces usually require the aid of degenerate critical coupling schemes or back-metal reflective layers to achieve high absorption, which often suffers from limitations such as sensitive geometrical parameters, ohmic losses, and low -factors. This work presents an ADM for high- near-perfect light absorption, which consists of double Si nanorods and SiO/TaO multilayers.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
University of Califonia, Los Angeles, Department of Physics & Astronomy, Los Angeles, Califonia 90095-1547, USA.
Nanophotonics
September 2024
Institute of Modern Optics, Nankai University, Tianjin, China.
Multi-resonant metasurfaces are of great significance in the applications of multi-band nanophotonics. Here, we propose a novel metasurface design scheme for simultaneously supporting quasi-bound states in continuum (QBIC) and other resonant modes, in which QBIC resonance is generated by mirror or rotational symmetry breaking in oligomers while other resonant modes can be simultaneously excited by rationally designing the shapes of meta-atoms within oligomers. As an example, the simultaneous excitation of QBIC and anapole modes are demonstrated in a dimer metasurface composed of asymmetric dumbbell-shaped apertures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!