Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.52.2750 | DOI Listing |
Transition metal phosphorus sulfides (MPS), a family of two-dimensional magnetic materials with a van der Waals structure, exhibit promising applications in nonlinear optical devices. The emergence of carrier coherence in MPS is a fascinating topic in coherently controlling the nonlinear effect (or other novel phenomena). Herein, we systematically investigated the third-order nonlinear optical responses of MPS (M = Ni, Fe, Mn) flake suspensions based on spatial self-phase modulation (SSPM) effect.
View Article and Find Full Text PDFIUCrJ
March 2025
Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
A detailed study of the X...
View Article and Find Full Text PDFSensors (Basel)
January 2025
Peking University Yangtze River Delta Institute of Optoelectronics, Nantong 100871, China.
To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
Forest age structures have been substantially affected by natural disturbances and anthropogenic activities worldwide. Their changes can significantly influence local and nonlocal climate through both the biogeochemical and biophysical processes. However, numerous studies have focused on the biogeochemical effect of forest age changes whereas the biophysical effect has received far less attention.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Albury, Australia.
Background: The limitation in spatial resolution of bone scintigraphy, combined with the vast variations in size, location, and intensity of bone metastasis (BM) lesions, poses challenges for accurate diagnosis by human experts. Deep learning-based analysis has emerged as a preferred approach for automating the identification and delineation of BM lesions. This study aims to develop a deep learning-based approach to automatically segment bone scintigrams for improving diagnostic accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!