Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.48.2968DOI Listing

Publication Analysis

Top Keywords

electric-field effects
4
effects photodetachment
4
photodetachment excitation
4
excitation hn=2
4
electric-field
1
photodetachment
1
excitation
1
hn=2
1

Similar Publications

Design of antiferroelectric polarization configuration for ultrahigh capacitive energy storage via increasing entropy.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.

Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.

View Article and Find Full Text PDF

The space charge effect induced by high-quality heterojunctions is essential for efficient electrocatalytic processes. Herein, we delicately manipulate intermolecular charge transfer by modifying substituents (-g = -CH3, -H, -NO2) with various electron donating/withdrawing capabilities in CoPc-g/CoS organic-inorganic heterostructures. CoPc-CH3, as a typical electron donor, transfers more electrons to CoS due to the presence of -CH3, forming the strongest space electric field and thus regulating the dual active sites at the interface.

View Article and Find Full Text PDF

Synergistic spatial separation effect of internal electric field in ALD-generated BiFeO/CuO@Co Z-type heterojunction for enhanced photocatalytic water oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China; Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Altering the electron distribution within a catalyst to manipulate internal charge migration pathways is an effective strategy for achieving high efficiency in carrier separation and migration, which is essential for the advancement of photocatalytic water oxidation technologies. We have employed atomic layer deposition (ALD) to construct a BiFeO/CuO (BFO/CuO) heterojunction with a specific CuO thickness, resulting in a Z-type junction (BFO/CuO50) characterized by a robust internal electric field. This junction facilitates the spatial separation of charge carriers, thereby enhancing their migration efficiency.

View Article and Find Full Text PDF

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!