Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.48.829DOI Listing

Publication Analysis

Top Keywords

hyperfine-interaction constants
4
constants 8d3/2
4
8d3/2 state
4
state 85rb
4
85rb quantum-beat
4
quantum-beat spectroscopy
4
hyperfine-interaction
1
8d3/2
1
state
1
85rb
1

Similar Publications

Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded FeO-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM).

View Article and Find Full Text PDF

Newly observed low-lying Ω = 1 state of PbO.

J Chem Phys

April 2024

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

High-resolution spectroscopy of lead monoxide was performed in a range of 22 400-25 300 cm-1. A new Ω = 1 state located between the a1 and A0+ states was observed, and it is labeled c1. Spectroscopic constants, including the hyperfine interaction coefficient, were determined for the a1 and c1 states.

View Article and Find Full Text PDF

Producing Conventional and Transient Amino(mercapto)methyl Radicals by Addition of Muonium to a Crystalline Thioformamide (Mes*NHCH=S).

Chemphyschem

June 2024

Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.

Muonium (Mu=μe) is composed of a muon of light isotope of proton (μ) and electron (e) and can be used as a light surrogate for a hydrogen atom. In this paper, we investigated addition of muonium to a newly synthesized Mes*-substituted thioformamide (Mes*NHCH=S, Mes*=2,4,6-tBuCH). Transverse-field muon spin rotation (TF-μSR) of a solution sample of the thioformamide confirmed addition of muonium to the sulfur atom leading to the corresponding C-centered radical [Mes*NHC(H)⋅-SMu].

View Article and Find Full Text PDF

We establish a theoretical model to analyze the photoassociative spectroscopy of 85Rb 133Cs molecules in the (3)3Σ+ state. The vibrational energy, spin-spin coupling constant, and hyperfine interaction constant of the (3)3Σ+ state are determined based on nine observed vibrational levels. Consequently, the Rydberg-Klein-Rees potential energy curve of the (3)3Σ+ state is obtained and compared with the ab initial potential energy curve.

View Article and Find Full Text PDF

The influence of magnetic fields on chemical reactions, including biological ones, has been and still is a topical subject in the field of scientific research. Experimentally discovered and theoretically substantiated magnetic and spin effects in chemical radical reactions form the basis of research in the field of spin chemistry. In the present work, the effect of a magnetic field on the rate constant of the bimolecular spin-selective recombination of radicals in the bulk of a solution is considered theoretically for the first time, taking into account the hyperfine interaction of radical spins with their magnetic nuclei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!