Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.45.6296DOI Listing

Publication Analysis

Top Keywords

nonperturbative electromagnetic
4
electromagnetic lepton-pair
4
lepton-pair production
4
production peripheral
4
peripheral relativistic
4
relativistic heavy-ion
4
heavy-ion collisions
4
nonperturbative
1
lepton-pair
1
production
1

Similar Publications

The full information about the interaction between a quantum emitter and an arbitrary electromagnetic environment is encoded in the so-called spectral density. We present an approach for describing such interaction in any coupling regime, providing a Lindblad-like master equation for the emitter dynamics when coupled to a general nanophotonic structure. Our framework is based on the splitting of the spectral density into two terms.

View Article and Find Full Text PDF

Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.

View Article and Find Full Text PDF

We report the first lattice QCD computation of pion and kaon electromagnetic form factors, F_{M}(Q^{2}), at large momentum transfer up to 10 and 28  GeV^{2}, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at Q^{2}≲4  GeV^{2}. For Q^{2}≳4  GeV^{2}, our results provide ab initio QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders.

View Article and Find Full Text PDF

Strong-field quantum electrodynamics (SF QED) is a burgeoning research topic dealing with electromagnetic fields comparable to the Schwinger field (≈1.32×10^{18}  V/m). While most past and proposed experiments rely on reaching this field in the rest frame of relativistic particles, the Schwinger limit could also be approached in the laboratory frame by focusing to its diffraction limit the light reflected by a plasma mirror irradiated by a multipetawatt laser.

View Article and Find Full Text PDF
Article Synopsis
  • * Experiments on highly charged ions, particularly uranium, are complicated but critical for studying the effects of strong electromagnetic fields on QED calculations, which behave differently under these conditions.
  • * The research presented achieved precise measurements of electron interactions in uranium ions, allowing for tests of both individual electron effects and interactions between multiple electrons, contributing valuable data for theoretical models in strong-field QED.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!