Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.45.8842DOI Listing

Publication Analysis

Top Keywords

gain saturation
4
saturation bunched
4
bunched free-electron
4
free-electron lasers
4
gain
1
bunched
1
free-electron
1
lasers
1

Similar Publications

Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

Experiences of patients who retest positive for SARS-CoV-2 Omicron variant after discharge: a qualitative study.

J Infect Dev Ctries

December 2024

The Cancer Hospital Affiliated to Shandong First Medical University (Shandong Cancer Prevention Research Institute, Shandong Cancer Hospital), Jinan 250117, China.

Introduction: In this study, we analyzed the psychological aspects of coronavirus disease 2019 (COVID-19) patients who were discharged from the hospitals in Shanghai, China, and later had positive nucleic acid retest results for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection (re-positive COVID-19). The purpose was to gain clarity on the patients' needs and to provide evidence for the medical staff to deliver scientific and targeted health care to the patients.

Methodology: We screened patients who tested positive for SARS-CoV-2 Omicron variant infection by nucleic acid testing after having previously recovered from a COVID-19 infection and being discharged from Shanghai shelter hospitals or COVID-19-designated hospitals from April 3, 2022, to May 10, 2022.

View Article and Find Full Text PDF

A multiplexing method based on multidimensional readout method.

Phys Med Biol

January 2025

Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Guangqiao Load, Shenzhen, 518132, CHINA.

To develop and validate a novel multidimensional readout method that significantly reduces the number of readout channels in PET detectors while maintaining high spatial and energy performance. Approach: We arranged a 3×3×4 SiPM array in multiple dimensions and employed row/column/layer summation with a resistor-based splitting circuit. We then applied denoising methods to enhance the peak-to-valley ratio in the decoding map, ensuring accurate crystal-position determination.

View Article and Find Full Text PDF

Utilizing Image Processing Techniques for Wound Management and Evaluation in Clinical Practice: Establishing the Feasibility of Implementing Artificial Intelligence in Routine Wound Care.

Adv Skin Wound Care

January 2025

Mai Dabas is Master's Degree Student, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel. Suzanne Kapp, PhD, RN, is Clinical Associate Professor, School of Health Sciences, Faculty of Medicine, Dentistry and Health Sciences, Department of Nursing, The University of Melbourne, Melbourne, Australia; and National Manager Wound Prevention and Management, Regis Aged Care, Camberwell, Victoria, Australia. Amit Gefen, PhD, is Professor of Biomedical Engineering and the Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium; and Department of Mathematics and Statistics and the Data Science Institute, Faculty of Sciences, Hasselt University, Hasselt, Belgium. Acknowledgments: This work was supported by a competitive grant from the Victorian Medical Research Acceleration Fund, with funding co-contribution from the Department of Nursing at the University of Melbourne, the Melbourne Academic Centre for Health, and Mölnlycke Health Care. This work was also partially supported by the Israeli Ministry of Science & Technology (Medical Devices Program grant no. 3-17421, awarded to Professor Amit Gefen in 2020). The authors thank Ms Carla Bondini for her assistance with data collection and management for this study and Mr Daniel Kapp for proofreading the manuscript. The authors have disclosed no other financial relationships related to this article. Submitted February 1, 2024; accepted in revised form April 16, 2024.

Objective: To develop a generalizable and accurate method for automatically analyzing wound images captured in clinical practice and extracting key wound characteristics such as surface area measurement.

Methods: The authors used image processing techniques to create a robust algorithm for segmenting pressure injuries from digital images captured by nurses during clinical practice. The algorithm also measured the real-world wound surface area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!